The anodized cnc parts is recommended by Honscn Co.,Ltd for 2 keys: 1) It is manufactured based on fine materials which are supplied by our reliable partners, fantastic design which is made by our own team of talents, and excellent craftsmanship which is a result of talents and skills; 2) It is applied in specific fields where it is in the lead, which can be attributed to our precise positioning. In the future, it will continue playing an important role in the market, on a basis of our constant investment and strong R&D capability.
HONSCN is the renowned brand in both domestic and foreign markets. Through in-deep market exploration on products, we collect a variety of information about market demand. According to the data, we develop different products fitting to specific demand. In this way, we are about to tap into the global market targeting specific customer group.
Most products in Honscn including anodized cnc parts can be customized if specific requirements put forward. Besides that, we can also provide the reliable and trustworthy shipping service.
In recent years, the global aerospace industry has made remarkable achievements, which cannot be separated from the important support of CNCM machining technology. As an efficient and high-precision machining method, CNCM technology is increasingly widely used in the aerospace field, which provides a strong guarantee for the performance improvement of aerospace equipment.
According to international market research institutions, the global aerospace market size will maintain steady growth in the next decade and is expected to reach about $200 billion by 2028. In China, the size of the aerospace market is also continuing to expand and is expected to reach about 250 billion yuan by 2026. In this context, the application of CNCM machining technology in the aerospace industry is particularly important.
It is understood that CNC machining technology in the aerospace field can produce accurate, precise, complex parts, such as aircraft engines, turbine blades, aircraft structural parts, etc. These components need to have high accuracy and stability to ensure the safety and performance of aerospace spacecraft. According to relevant data, the global aerospace parts market is expected to reach about $12 billion by 2026.
In addition, the high efficiency of CNC machining technology in the aerospace field has also been widely used. In the assembly process of large aerospace spacecraft such as aircraft and rockets, CNC machining technology can achieve rapid and mass production and improve production efficiency. According to statistics, the global aerospace assembly market size is expected to reach about $60 billion by 2026.
In terms of materials, the compatibility of CNC machining technology in the aerospace field has been fully reflected. With the increasing application of new materials in the aerospace field, such as carbon fiber composite materials, titanium alloys, etc., CNC machining technology can realize the efficient processing of these materials to ensure the performance and quality of parts. According to statistics, the global aerospace materials market size is expected to reach about $35 billion by 2026.
It is worth mentioning that CNC machining technology also supports the manufacture of customized parts in the aerospace sector. This is of great significance for the manufacture of aerospace spacecraft in special scenarios. According to statistics, the global aerospace custom parts market size is expected to reach about $2.5 billion by 2026.
In summary, the application of CNCM machining technology in the aerospace industry provides a strong guarantee for the performance improvement of aerospace equipment. In the context of the rapid development of China's aerospace industry, the importance of CNC machining technology is self-evident. With the continuous expansion of the aerospace market, the application prospect of CNC machining technology in the aerospace industry will be broader. We have reason to believe that CNC machining technology will continue to help the prosperity of aerospace industry.
With the rapid development of science and technology, CNC machining technology is increasingly widely used in the medical industry. Its high precision, efficiency and compatibility provide a strong guarantee for the manufacture of medical devices and equipment.
According to statistics from international market research institutions, the global medical device market is increasing year by year and is expected to reach about 520 billion US dollars by 2025. In China, the scale of the medical device market is also continuing to expand, and is expected to reach 160 billion yuan by 2023. In this context, the application of CNC machining technology in the medical industry is particularly important.
CNC machining can process a wide range of materials, from metals and alloys to ceramics. Nevertheless, there are some requirements for medical equipment and devices. Depending on the specific use of the part or product, the material must be biocompatible or approved as medical grade.
It is understood that CNC machining technology can produce accurate, precise and complex surgical instruments, such as minimally invasive surgical instruments and endoscopes. These instruments need to have high accuracy and stability to ensure safety and effectiveness during the surgical procedure. According to relevant data, the global surgical device market is expected to reach about $5 billion by 2024.
In addition, the application of CNC machining in the manufacture of artificial joints, implants and orthopedic devices also provides patients with more treatment options. According to statistics, the global artificial joint market size is expected to reach about $12 billion by 2024. The advantages of CNC machining technology in the manufacturing of medical equipment components have also been fully utilized. The core components of high-end medical equipment, such as medical pumps, CT and MRI scanners, benefit from the high precision, high efficiency and reliability of CNC machining technology.
In terms of biocompatible materials, the compatibility of CNC processing technology and medical device manufacturing has also been widely recognized. According to statistics, the global market for biocompatible materials is expected to reach about $5.5 billion by 2024.
It is worth mentioning that CNC machining technology also supports the manufacture of customized medical parts. This is of great significance for the treatment of rare diseases and rehabilitation of special patients. According to statistics, the global market for customized medical parts is expected to reach about $4.5 billion by 2024.
In summary, the application of CNC machining technology in the medical industry provides a strong guarantee for the improvement of the performance of medical devices and equipment. In the current era of rapid development of science and technology, we have reason to believe that CNC machining technology will play a greater role in the medical industry to help the prosperous development of China's medical cause. With the continuous expansion of the medical device market, the application prospect of CNC machining technology in the medical industry will be broader.
Precision machinery parts processing plays a crucial role in various industries, including aerospace, automotive, medical, and manufacturing.Precision machinery parts have specific requirements to ensure optimal performance.One crucial aspect is the material used for processing. If the hardness of the material being processed surpasses that of the lathe tool, it can potentially cause irreparable damage.Therefore, it is essential to select materials that are compatible with precision machining.
1. Material Strength and Durability
One of the key requirements of precision machinery parts processing is material strength and durability.Machinery parts often undergo significant stress and pressure during operation, and the selected materials must be able to withstand these forces without deforming or breaking.For example, aerospace components require materials with high strength-to-weight ratios, such as titanium alloys, to ensure structural integrity and reliability.
2. Dimensional Stability
Precision machinery parts must maintain their dimensional stability even under extreme operating conditions.The materials used in their processing should possess low thermal expansion coefficients, allowing the parts to retain their shape and size without warping or distorting due to temperature fluctuations.Steels with low thermal expansion coefficients, such as tool steel or stainless steel, are commonly preferred for precision machinery parts subjected to varying thermal conditions.
3.Wear and Corrosion Resistance
Precision machinery parts often interact with other components or environments that can cause wear and corrosion.The materials chosen for their processing should exhibit excellent wear resistance to withstand constant friction and minimize surface damage.Additionally, corrosion resistance is crucial to ensure the longevity of the parts, especially in industries where exposure to moisture, chemicals, or harsh environments is common.Materials such as hardened steel, stainless steel, or certain grades of aluminum alloys are frequently utilized to enhance wear and corrosion resistance.
4.Machinability
Efficient and precise machining is a critical factor in the manufacturing of precision machinery parts.The material selected for processing should possess good machinability, allowing it to be easily cut, drilled, or shaped into the desired form with minimal tool wear.Materials like aluminum alloys with excellent machinability properties are often preferred for their versatility and ease of shaping into complex geometries.
5.Thermal Conductivity
Thermal management is significant in precision machinery parts processing, as excessive heat can adversely affect performance and increase the risk of failure.Materials with high thermal conductivity, such as copper alloys or certain grades of aluminum, help dissipate heat efficiently, preventing localized temperature rise and ensuring optimal operating conditions.
6.Cost-Effectiveness
While meeting the specific requirements is crucial, cost-effectiveness is also an important consideration in precision machinery parts processing.The selected materials should strike a balance between performance and cost, ensuring that the final product remains economically viable without compromising quality.Conducting a cost-benefit analysis and considering factors like material availability, processing complexity, and overall project budget can aid in making informed decisions regarding material selection.
Precision parts processed with stainless steel have the advantages of corrosion resistance, long service life and good mechanical and dimensional stability, and austenitic stainless steel precision parts have been widely used in medical, instrumentation and other precision machinery fields.
The reasons why stainless steel material affects the machining accuracy of parts
The exceptional strength of stainless steel, coupled with its impressive plasticity and noticeable work hardening phenomenon, result in a significant disparity in cutting force when compared to carbon steel. In fact, the cutting force required for stainless steel surpasses that of carbon steel by more than 25%.
At the same time, the thermal conductivity of stainless steel is only one-third of that of carbon steel, and the cutting process temperature is high, which makes the milling process deteriorate.
The growing machining hardening trend observed in stainless steel materials demands our serious attention. During milling, the intermittent cutting process leads to excessive impact and vibration, resulting in substantial wear and collapse of the milling cutter. Furthermore, the use of small-diameter end milling cutters poses a higher risk of breakage. Significantly, the decrease in tool durability during the milling process adversely affects the surface roughness and dimensional accuracy of precision parts machined from stainless steel materials, rendering them unable to meet the required standards.
Stainless steel precision parts processing precision solutions
In the past, traditional machine tools had limited success in machining stainless steel parts, particularly when it came to small precision components. This posed a major challenge for manufacturers. However, the emergence of CNC machining technology has revolutionized the machining process. With the aid of advanced ceramic and alloy coating tools, CNC machining has successfully taken on the complex task of processing numerous stainless steel precision parts. This breakthrough has not only improved the machining accuracy of stainless steel components but has also significantly enhanced the efficiency of the process. As a result, manufacturers can now rely on CNC machining to achieve precise and efficient production of stainless steel precision parts.
As an industry-leading manufacturer in precision machinery parts processing, HONSCN understands the significance of material requirements in delivering exceptional products. We prioritize using high-quality materials that meet all specific requirements, guaranteeing superior performance, durability, and reliability. Our team of experienced professionals meticulously evaluates each project's unique needs, selecting the most suitable materials to ensure customer satisfaction and industry-leading solutions.
In conclusion, precision machinery parts processing demands careful consideration of the materials used. From strength and durability to wear resistance and machinability, each requirement plays a vital role in achieving high-quality products. By understanding and meeting these specific material requirements, manufacturers can produce precision machinery parts that excel in performance, reliability, and longevity. Trust HONSCN for all your precision machinery parts processing needs, as we strive to deliver excellence through meticulous material selection and exceptional manufacturing expertise.
Brand of moisture meter: Boshi Model: bos-180a series Test item: automotive plastic sheet
The water content of plastics is a key reason affecting the production process, commodity appearance and commodity characteristics of resin materials such as polyethylene (PE) and polypropylene (PP). In the injection molding process, if the plastic raw materials with excessive water content are used for production and manufacturing, it will cause some production and processing problems and affect the product quality, such as cracking of the surface layer, reflection, wear resistance, reduction of material mechanical properties such as service performance and tensile strength, etc. Therefore, the control of water content is particularly important for the production of high-quality plastic products.
Testing water content is a necessary step in the production of plastic materials. Testing moisture content is basically divided into national standard method and rapid moisture tester method. Boshi plastic rapid moisture tester is a widely used instrument and equipment at present.(auto plastic parts)Test steps:
1. First, take out the moisture meter, place it and power it on, then break the test material into small pieces, pour out about 6 grams of plastic pieces and pour them into the stainless steel tray. In order to dry and dry the plastic thoroughly during the test, we spread the fine pieces of plastic parts into a scattered form so that the temperature can penetrate into the plastic parts. Use tweezers to lay small pieces of plastic parts evenly. In order to avoid the zoom and blackening of small pieces of plastic parts after baking, we set the temperature at 105 , press the "start" key to start the test for 1 minute and 49 seconds, and then the test ends, and the test data displays 0.3%;
2. In order to obtain more stable data results, wait for the moisture meter of plastic parts to cool down before the second test. When the temperature of the instrument itself drops below 40 , also take about 6 grams of small pieces of plastic parts into the stainless steel tray, and lay the small pieces of plastic parts evenly. This time, we set the temperature at 105 , press the "start" key to start the test, and the test ends after 1 minute and 38 seconds, The test data showed 0.29%;Test data:From the above tests, we found that the moisture of these plastic sheets was well controlled and the moisture distribution was relatively uniform, which promoted the plastic parts to be completely dry after the test, and the moisture data results were also very good.
matters needing attention:1. Small pieces of plastic sheets shall be small enough to ensure the complete drying of water in plastic parts, and shall be evenly spread on the tray as far as possible, rather than simply stacked together.2. Do not set the temperature too high to prevent the plastic parts from melting in case of high temperature. The moisture meter of plastic parts has its use environmental restrictions. Please use it under the environmental conditions specified in the product operation manual. Do not operate in harsh environments.
3. As the instrument is a precision instrument, do not knock the workbench or vibrate the instrument during heating, otherwise the measurement will be inaccurate.4. After the test, do not touch the tray for the Yi first time to avoid scalding.Editing: JQ
Nowadays, smart phones have changed from plastic back cover to thin metal body. Although the smart appearance attracts consumers, the production process of mobile phone case parts suppliers is more difficult. Only because the cutting and processing of the case requires quite high precision, even if it is only a small deviation, it may cause workpiece scrapping and erode profits.
In order to improve the yield of CNC processing, mobile phone box manufacturers are often forced to change tools frequently to ensure that CNC machines maintain a normal production beat, but this leads to an increase in the cost of consumables and also affects profits. In addition, the mobile phone case processing industry attaches great importance to the production rate, for fear that the sudden failure of CNC cutting machine will lead to negative chain reactions such as production capacity decline and delivery delay, which will damage customer satisfaction and goodwill. Therefore, it allocates manpower to carry out regular inspection and entrusts outsourcers to provide second-line maintenance support, but these methods are passive, It is difficult to effectively deal with abnormal conditions at the first time.
Mobile phone case is one of the cases of CNC machine application. CNC cutting is widely used in various processing and manufacturing, and various suppliers are facing a similar profit defense war. Xu Changyi, manager of Linghua technology measurement and automation products division, believes that whether you want to improve the machining accuracy or increase the productivity, the axe bottom salary drawing plan is to monitor the cutting process, especially the vibration monitoring, mainly because once the vibration value of the machine rises beyond the reasonable range due to imbalance, resonance or misalignment, It is easy to affect the operation of the machine, resulting in fault shutdown.
PC based monitoring solution is better than PLC solution to capture fine vibration signals
If the CNC processing machine can be endowed with intelligence and built with a set of full-time vibration monitoring mechanism, it can diagnose the health state of the machine at any time. Instead of waiting for the output of the final finished product and judging the cause of the abnormality afterwards, it can detect the unusual state of the processing machine in real time through preventive detection in advance and take corresponding treatment measures quickly, Including optimizing and adjusting processing parameters (such as changing spindle speed), or changing tools, etc. to solve small deviations immediately and avoid causing major disasters in the future.
It can not be denied that the cutting vibration monitoring of CNC machining machines is not a new topic at this moment. In the past, there were some PLC solutions with the demand of simplicity and convenience, which boasted that as long as the CNC machine was connected, it could produce utility quickly; Therefore, it is inevitable that some people wonder why PC based monitoring scheme is needed since PLC is available to assist in cutting vibration monitoring?
The so-called devil lies in the details. Some subtle vibration signals or high-frequency signals reflect some facts to some extent. It may be that the connecting mechanism begins to be unbalanced, the rotating spindle bearing ball breaks and affects the transmission power, or the fasteners become loose, which means that the CNC machining machine begins to "get sick", and the symptoms are different with the different machine characteristics; These subtle and changeable signs are not easy to capture by virtue of the PLC solution with the characteristics of low sampling rate, supporting limited bandwidth range and fixed algorithm. If the CNC monitoring solution can capture small changes and help users quickly grasp the key factors that may lead to reduced accuracy or capacity decline, they can respond as soon as possible.
In view of this, Linghua launched a cutting vibration monitoring scheme called mcm-100, which boasts that it can carry out 24-hour continuous data acquisition and vibration measurement for rotating transfer machinery and equipment under the condition of high precision and high sampling rate, and integrate the functions of data collection, vibration analysis and calculation, operation, Internet access and so on, Assist CNC machine users to successfully solve various challenges faced by traditional cutting process, and endow CNC machine with intelligence in the most relaxed and burden-free way.Achieve the wonderful effect of preventive maintenance through high-precision monitoring
Xu Changyi explained that generally speaking, there are three detection situations that CNC machines most want to establish. One is "spindle vibration detection", which aims to monitor the vibration of the spindle during cutting. The method is to directly measure the RMS value of the time domain signal. If it exceeds the critical value, reduce the speed or stop running; The second is "bearing quality diagnostic tic", which is intended to diagnose the health status of bearings. It is carried out when CNC does not perform cutting and only idles at high speed; The third is "spindle collision detection", which is used to detect the spindle collision. When the vibration wave pattern meets some default conditions, it is judged that the collision has occurred, and the spindle movement is stopped immediately.
The above situations 1 and 2 are closely related to the accuracy and bandwidth range of vibration signals. PLC solutions can capture very little information, which is difficult to help users establish contingency strategies; In contrast, mcm-100 not only has 24 bit high resolution capability (generally falling in the range of 12 or 16 bit), but also can capture high-frequency signals with a sampling rate of up to 128ks / S (generally only supporting 20Ks / s or even lower), so as to provide users with more vibration analysis materials.New business opportunities for CNC machine equipment manufacturers
On the other hand, the cutting vibration monitoring scheme can also create new business opportunities for CNC machine equipment manufacturers. As CNC machine equipment suppliers are exposed to a large amount of vibration information, once combined with big data analysis, they have a more thorough understanding of the correlation between signal changes and machine failures. CNC machine equipment suppliers can make good use of the accumulated knowledge assets, give birth to value-added services, and even adjust their business model from selling out equipment to selling machine operation hours, Establish long-term stable income. According to Linghua technology, the operator of PC based cutting vibration monitoring scheme, the vibration monitoring scheme has entered the landing stage and has been adopted by various well-known CNC tool machine manufacturers, and its demand has increased significantly in 2017, which shows that both CNC processors and CNC tool machine manufacturers have increasingly keen demand for CNC cutting vibration monitoring scheme.
Contact: Ada Li
Tel: +86 17722440307
WhatsApp: +86 17722440307
E-mail: Ada@honscn.com
Add: 4F, No. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China