loading

Honscn มุ่งเน้นไปที่บริการเครื่องจักรกลซีเอ็นซีระดับมืออาชีพ  ตั้งแต่ปี 2546

Honscn เปิดเผย: การใช้งานที่สำคัญและข้อดีของการกัดความเร็วสูงในการตัดเฉือนที่มีความแม่นยำ

Efficiency Revolution in Precision Manufacturing

In the era of Industry 4.0, **High-Speed Machining (HSM)** technology has become the core driving force in the field of precision machining. By combining high-speed spindles, advanced tool materials and intelligent CNC systems, this technology has not only greatly improved machining efficiency, but also achieved breakthroughs in micron-level precision in aerospace, medical equipment, precision molds and other fields. This article will deeply analyze the technical principles, practical application scenarios and economic benefits of high-speed milling.

Technical principles and core parameters of high-speed milling

The essential difference between high-speed milling and traditional machining

High-speed milling does not simply increase the spindle speed, but achieves a qualitative leap through the optimization of the dynamic balance system:

  • Cutting speed (Vc) : usually 5-10 times that of traditional milling (300-1000 m/min)
  • Feed rate (F) : fast material removal with high speed
  • Cutting depth (Ap) and cutting width (Ae) : low stress machining through precise control

Four technical pillars for high-speed milling

Technology module

Innovation breakthrough

Typical application cases

Spindle system

Ceramic bearing/magnetic suspension spindle (speed up to 60,000 RPM)

DMG MORI HSC 70 machine tool from Germany

Tool design

Nano-coated carbide tool (TiAlN coating life increased by 300%)

Sandvik CoroMill Plura series

CNC system

Intelligent control with 5,000 lines of code pre-read (reduces acceleration and deceleration shock)

Siemens 840D solutionline

Process algorithm

AI-based cutting parameter optimization (real-time feed rate adjustment)

HyperMill MAXX Machining

Key application scenarios of high-speed milling in precision machining

Microstructure machining in the aerospace field

  • Titanium alloy integral blade processing : high-speed milling shortens the traditional 3-week processing cycle to 80 hours
  • Honeycomb structure processing : 0.2mm diameter milling cutter is used to achieve aluminum honeycomb processing with a wall thickness of 0.05mm
  • Typical case : The machining error of Boeing 787 wing ribs is controlled within ±5μM

Manufacturing of complex curved surfaces of medical devices

  • Bionic curved surfaces of artificial joints : Swiss GF Machining solution achieves Ra 0.1μm surface roughness
  • Minimally invasive surgical instrument processing : one-time molding technology for 0.3mm diameter inner cavity channels
  • Biocompatibility guarantee : avoid material lattice damage caused by traditional processing

Efficiency breakthrough in precision mold industry

  • Mobile phone glass mold processing : the processing time of cemented carbide molds is compressed from 48 hours to 9 hours
  • Optical lens mold core processing : aspheric profile accuracy reaches PV value 0.2μM
  • Economic comparison : mold life is increased by 40% while reducing processing costs by 25%

Six core advantages of high-speed milling

Exponential improvement in processing efficiency

  • Material removal rate (MRR) : Aluminum alloy can reach 1,500 cm³/min (3 times that of traditional processing)
  • Optimized tool change time : HSK tool holder system achieves 1.5 seconds fast tool change

Revolutionary improvement in surface quality

  • Residual stress control : Cutting force is reduced by 60% to avoid micro cracks
  • Heat-affected zone (HAZ) : Temperature is controlled below 150°C during titanium alloy processing

Freedom of processing complex geometric shapes

  • Five-axis linkage processing : Impeller parts can complete the entire process in one clamping
  • Micro-feature processing : The minimum rib structure that can be processed is 0.05mm wide

Technical challenges and solutions

Engineering practice of vibration suppression

  • Flutter prediction system: Real-time detection of vibration sources through spindle current fluctuations
  • Tool path optimization: Spiral cutting method reduces radial impact force

Tool life management strategy

  • Intelligent wear monitoring : Tool replacement warning based on acoustic emission signals
  • Coating technology innovation : Diamond coated tool life reaches 120 hours in graphite processing

Future trends: intelligent and sustainable development

Deep integration of digital twin technology

  • Virtual processing simulation : predict more than 80% of process defects in advance
  • Adaptive control system : automatically adjust parameters according to changes in material hardness

Path to green manufacturing

  • Dry cutting technology : reduce cutting fluid usage by 95% through micro-lubrication (MQL)
  • Waste chip regeneration system : closed-loop production of aluminum chips directly recycled and smelted

High-speed milling technology is evolving from a simple processing method to a core node of the s mart manufacturing ecosystem . With the continuous breakthroughs in materials science, digital twins, and AI algorithms, this technology will open up new possibilities in areas such as nano-scale processing and space manufacturing. For manufacturing companies, investing in high-speed milling is not only an equipment upgrade, but also a strategic choice to build future competitiveness.

ก่อนหน้า
เครื่องจักรกล CNC ที่มีความแม่นยำสูง: ให้ความคลาดเคลื่อน ±0.005-0.01 มม.
การวิเคราะห์เชิงลึกของเทคโนโลยีการตัดเฉือนห้าแกน: 3 ขั้นตอนสำคัญในการควบคุมใบพัดเครื่องบินอย่างแม่นยำ
ต่อไป

สารบัญ

RECOMMENDED FOR YOU
ไม่มีข้อมูล
ติดต่อกับเรา
Customer service
detect