mechanical parts' s manufacturing process is implemented and completed by the Honscn Co.,Ltd with a view to developing and improving accuracy and timeliness in the manufacturing process. The product has been processed by high-tech equipment staffed with careful and senior operators. With the highly accurate performance, the product features high-end quality and perfect user experience.
The brand HONSCN and the products under it should be mentioned here. They are of great significance to us during the market exploration. Literally speaking, they are the key for us to enjoy high reputation now. We receive orders on them every month, along with reviews from our clients. They are now marketed throughout the world and are well accepted by users in different areas. They materially help build our image in the market.
Through Honscn, we fulfill our customers' needs with defect-free mechanical parts and related services on time and every time. We are a value-providing specialty company, which ensures compatibility with our customers' unique requirements.
General steps of plastic parts designPlastic parts are designed on the basis of industrial modeling. First, see whether there are similar products for reference, and then carry out detailed functional decomposition of products and parts to determine the main process problems such as parts folding, wall thickness, demoulding slope, transition treatment between parts, connection treatment and strength treatment of parts.1. Similar reference
Before design, first look for similar products of the company and peers, what problems and deficiencies have occurred in the original products, and refer to the existing mature structure to avoid problematic structural forms.2. Determine the part discount, transition, connection and clearance treatment between partsUnderstand the modeling style from the modeling drawing and effect drawing, cooperate with the functional decomposition of the product, determine the number of parts (different surface states are either divided into different parts, or there must be over treatment between different surfaces), determine the over treatment between parts' surfaces, and determine the connection mode and fit clearance between parts.
3. Determination of part strength and connection strengthDetermine the wall thickness of the part body according to the product size. The strength of the part itself is determined by the wall thickness of the plastic part, the structural form (the plastic part in the shape of a flat plate has the worst strength), the stiffener and the stiffener. While determining the single strength of parts, the connection strength between parts must be determined. The methods to change the connection strength include: adding screw column, adding stop, adding buckle position and adding reinforcing bone against top and bottom.4. Determination of demoulding slope
The demoulding slope shall be comprehensively determined according to the material (PP, PE silica gel and rubber can be demoulded forcibly), surface state (the slope of decorative grain shall be greater than that of smooth surface, and the slope of etched surface shall be 0.5 degrees greater than that required by the template as far as possible, so as to ensure that the etched surface will not be damaged and improve the yield of products), transparency or not determines the demoulding slope of parts (the transparent slope shall be greater).Material types recommended by different product series of the companySurface treatment of plastic parts
Wall thickness selection of plastic partsFor plastic parts, the uniformity of wall thickness is required, and the workpiece with uneven wall thickness will have shrinkage traces. It is required that the ratio of stiffener to main wall thickness should be less than 0.4, and the maximum ratio should not exceed 0.6.Demoulding slope of plastic parts
In the construction of stereoscopic drawing, where the appearance and assembly are affected, the slope needs to be drawn, and the slope is generally not drawn for stiffeners.The demoulding slope of plastic parts is determined by the material, surface decoration status and whether the parts are transparent or not. The demoulding slope of hard plastic is greater than that of soft plastic. The higher the part, the deeper the hole, and the smaller the slope.Recommended demoulding slope for different materials
Numerical values of different accuracy in different size rangesDimensional accuracy of plastic partsGenerally, the accuracy of plastic parts is not high. In practical use, we mainly check the assembly dimensions, and mainly mark the overall dimensions, assembly dimensions and other dimensions that need to be controlled on the plan.
In practice, we mainly consider the consistency of dimensions. The edges of the upper and lower covers need to be aligned.Economic accuracy of different materialsNumerical values of different accuracy in different size ranges
Surface roughness of plastics1) The roughness of the etched surface cannot be marked. Where the plastic surface finish is particularly high, circle this range and mark the surface state as mirror.2) The surface of plastic parts is generally smooth and bright, and the surface roughness is generally ra2.5 0.2um.
3) The surface roughness of plastic mainly depends on the surface roughness of mold cavity. The surface roughness of mold is required to be one to two levels higher than that of plastic parts. The mold surface can reach ra0.05 by ultrasonic and electrolytic polishing.FilletThe fillet value of injection molding is determined by the adjacent wall thickness, generally 0.5 1.5 times of the wall thickness, but not less than 0.5mm.
The position of the parting surface shall be carefully selected. There is a fillet on the parting surface, and the fillet part shall be on the other side of the die. It is difficult to make, and there are fine trace lines at the fillet. However, fillet is required when anti cutting hand is required.Stiffener problemThe injection molding process is similar to the casting process. The non-uniformity of wall thickness will produce shrinkage defects. Generally, the wall thickness of reinforcement is 0.4 times of the main body thickness, and the maximum is no more than 0.6 times. The spacing between bars is greater than 4T, and the height of bars is less than 3T. In the method of improving the strength of parts, it is generally reinforced without increasing the wall thickness.
The reinforcement of the screw column shall be at least 1.0mm lower than the end face of the column, and the reinforcement shall be at least 1.0mm lower than the part surface or the parting surface.When multiple bars intersect, pay attention to the non-uniformity of wall thickness caused by the intersection.Design of stiffeners for plastic parts
Bearing surfacePlastic is easy to deform. In terms of positioning, it should be classified as the positioning of wool embryo. In terms of positioning area, it should be small. For example, the support of plane should be changed into small convex points and convex rings.Oblique roof and row position
The inclined top and row position move in the parting direction and perpendicular to the parting direction. The inclined top and row position shall be perpendicular to the parting direction, and there shall be sufficient movement space, as shown in the following figure:Treatment of plastic limit process problems1) Special treatment of wall thickness
For particularly large workpieces, such as the shell of toy cars, the wall thickness can be relatively thin by using the method of multi-point glue feeding. The local glue position of the column is thick, which is treated as shown in the following figure.Special treatment of wall thickness2) Treatment of small slope and vertical surface
The die surface has high dimensional accuracy, high surface finish, small demoulding resistance and small demoulding slope. In order to achieve this purpose, the parts with small inclination of the workpiece are inserted separately, and the inserts are processed by wire cutting and grinding, as shown in the figure below.To ensure that the side wall is vertical, the running position or inclined top is required. There is an interface line at the running position. In order to avoid obvious interface, the wiring is generally placed at the junction of fillet and large surface.Treatment of small slope and vertical surface
To ensure that the side wall is vertical, the running position or inclined top is required. There is an interface line at the running position. In order to avoid obvious interface, the wiring is generally placed at the junction of fillet and large surface.Problems often to be solved for plastic parts1) Transition processing problem
The accuracy of plastic parts is generally not high. There must be transition treatment between adjacent parts and different surfaces of the same part.Small grooves are generally used for transition between different surfaces of the same part, and small grooves and high-low staggered surfaces can be used between different parts, as shown in the figure.Surface over treatment
2) Clearance value of plastic partsParts are directly assembled without movement, generally 0.1mm;The seam is generally 0.15mm;
The minimum clearance between parts without contact is 0.3mm, generally 0.5mm.3) The common forms and clearance of plastic parts are shown in the figureCommon forms and clearance taking method of stop of plastic parts
The requirements of lightweight, safety and decoration in modern automobile manufacturing industry drive the development of traditional welding technology in the field of automobile plastics. In recent years, with the application of a variety of high-end technologies such as ultrasonic, vibration friction and laser technology in the field of automobile plastic parts manufacturing, the technical level and supporting capacity of domestic automobile parts manufacturing industry have been greatly improved.As for the welding and welding process of automotive interior parts, hot plate welding, laser welding, ultrasonic welding, non-standard ultrasonic welding machine, vibration friction machine, etc. have been developed. In the process, one-time overall or complex structure welding can be realized, and the optimal design requirements can be achieved on the basis of simplifying mold design and reducing molding cost.For typical interior and exterior trim parts, large components with high surface quality and complex structure, such as instrument panel, door panel, column, glove box, engine intake manifold, front and rear bumper, must select corresponding welding technology, and adopt appropriate welding process according to the requirements of interior structure, performance, materials and production cost. All these applications can not only complete the corresponding manufacturing process, but also ensure the excellent quality and perfect shape of products.
Hot plate welding machine: the hot plate welding machine equipment can control the horizontal or vertical movement of the hot plate welding die, and the transmission system is driven by pneumatic, hydraulic drive or servo motor. The advantages of hot plate welding technology are that it can be applied to workpieces of different sizes without area limitation, applicable to any welding surface, allowing plastic allowance compensation, ensuring welding strength, and adjusting welding procedures according to the needs of various materials (such as adjusting welding temperature, welding time, cooling time, input air pressure, welding temperature and switching time, etc.), In the welding process, the equipment can maintain good stability, ensure consistent welding effect and accuracy of workpiece height after machining.
Another feature of the horizontal hot plate welding machine is that it can rotate at 90 for cleaning. The processing period of hot plate welding machine can generally be divided into: original position (the hot plate does not move with the upper and lower molds), heating period (the hot plate moves between the upper and lower molds, and the heat of the hot plate moves down the upper and lower molds to dissolve the welding surfaces of the upper and lower workpieces), transfer period (the upper and lower molds return to the original position, and the hot plate exits), welding and cooling period (the upper and lower dies are joined to make the workpiece welded at the same time and cooled for forming), and return to the original position (the upper and lower dies are separated, and the welded workpiece can be taken out).
In the early automobile industry, these welding equipment were relatively common, but with the continuous improvement of the requirements for the structure, shape and service life of the parts themselves, the requirements for their processing equipment are higher and higher. Moreover, because the size of the equipment is limited to the size of the welded parts, the equipment and equipment driving mode should be selected according to the size of the parts in the design. The most important thing is the parts The heating area is large and there is large deformation. In addition, the welding process distinguishes the polarity and non polarity of welding plastics, resulting in the gradual replacement of hot plate welding by ultrasonic welding and laser welding. The main parts used for welding in China include automotive plastic fuel tank, battery, tail lamp, glove box, etc.
Laser welding: laser welding technology is widely used in today's medical device manufacturing industry. Only a few manufacturers in the automotive industry use laser welding air inlet pipe, etc. because it is a new welding technology, it is not very mature to a certain extent, but it is believed that it will be widely used in the near future because of its remarkable welding characteristics. Its advantage is that it can weld TPE / TP Or TPE products; under the condition of no vibration, nylon, workpiece with sensitive electronic parts and three-dimensional welding surface can be welded, which can save cost and reduce waste products.
In the welding process, the resin melts less, the surface can be welded tightly, and there is no flash or glue overflow. It is allowed that rigid plastic parts can be welded without glue overflow and vibration. Generally, workpieces with soft or irregular welding surfaces can be welded evenly regardless of the size of workpieces, especially for large-scale production of high-tech micro parts. However, laser conduction is limited. "Quasi synchronous" laser welding technology uses a scanning mirror to transmit the laser beam to the welding surface at the speed of 10m / s according to the welding shape. It can walk on the welding surface as many as 40 times in 1s. The plastic around the welding surface melts and the two workpieces are welded after pressurization.
Laser welding can be roughly divided into: solid Nd-YAG system (laser beam is generated by crystal) and diodesystem (high power diode laser) , CAD data programming. All materials can be laser welded with body materials, among which acrylonitrile butadiene styrene is most suitable for laser welding with other materials, nylon, polypropylene and polyethylene can only be welded with their own body materials, and other materials have general applicability for laser welding.fqj
Contact: Ada Li
Tel: +86 17722440307
WhatsApp: +86 17722440307
E-mail: Ada@honscn.com
Add: 4F, No. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China