Honscn Co.,Ltd has efficiently manufactured products like custom cnc parts and accessories with high performance. We utilize the finest craftsmanship and invest a lot in updating machines to make sure the production can be high efficiency. Also, we test each product thoroughly to guarantee the product outperforms well in long-lasting performance and service life.
HONSCN established by our company has been popular in the China market. We constantly keep trying new ways of increasing the current customers base, such as price advantages. Now we are also expanding our brand to the international market - attract global customers through word of mouth, advertising, Google, and official website.
At Honscn, the specifications and styles of products like our exquisitely-made custom cnc parts and accessories can be customized according to the needs of customers. We also want to let you know that samples are available to enable you to have a deep understanding of the products. In addition, the minimum order quantity can be discussed.
Shenzhen Honscn is a professional manufacturer of CNC Machine Parts, Auto Lathe Machine Parts, and Screw Fasteners. We offer OEM and ODM service with any related products for customers. We have a professional team of product design and engineers, as well as a professional QC team, our sales and documentation and logistics departments can finish the requirements of presentation of documents under various payment methods and different transportation modes.
• We can make offcial drawings based on customer request, or customer will provide their drawings for us to quote price and make samples for approval.
• After receiving the samples, customers will do a test for the material, size and tolerance. If customer need to change the size or material, we can arrange second samples for approval. Until customer approved the samples, then we will confirm large order.
Meantime, we will test it before shipping samples. And all tests are strictly carried out according to industry standards.
• If confirmed the sample okay, the customer needs us to provide the Mill Test Crtificate of this product conforming to EU standards, such as CE, RoHS, REACH before placing order. All of our products are in accordance with all the European certification, such as CE, RoHS, REACH, etc., and all of them have prepared standard documents for customers checking.
• We start to prepare the order materials when customer confirm all the details such as material, size, tolerance, surface finish and other details of the final sample.
After the package such as qty, label, shipping mark etc. are provided by customer, we starts to arrange the mass production. After all the goods finished, send pictures to customer for approval. We promise the packag is same as customer requested, mass products are exactly the same as the final samples. The following photos of the shipment, the passing rate of the third-party inspection of our company is 100%.
• After receiving shipment of whole order, customer put it on the market immediately and became the most popular product in the market quickly, no matter from the traditional market, the market of high-end professional fasteners or the online sales in Amazon. We always pay much attention to the quality of our products, which is recognized by customers and repurchased constantly.
With the rapid development of science and technology, CNC machining technology is increasingly widely used in the medical industry. Its high precision, efficiency and compatibility provide a strong guarantee for the manufacture of medical devices and equipment.
According to statistics from international market research institutions, the global medical device market is increasing year by year and is expected to reach about 520 billion US dollars by 2025. In China, the scale of the medical device market is also continuing to expand, and is expected to reach 160 billion yuan by 2023. In this context, the application of CNC machining technology in the medical industry is particularly important.
CNC machining can process a wide range of materials, from metals and alloys to ceramics. Nevertheless, there are some requirements for medical equipment and devices. Depending on the specific use of the part or product, the material must be biocompatible or approved as medical grade.
It is understood that CNC machining technology can produce accurate, precise and complex surgical instruments, such as minimally invasive surgical instruments and endoscopes. These instruments need to have high accuracy and stability to ensure safety and effectiveness during the surgical procedure. According to relevant data, the global surgical device market is expected to reach about $5 billion by 2024.
In addition, the application of CNC machining in the manufacture of artificial joints, implants and orthopedic devices also provides patients with more treatment options. According to statistics, the global artificial joint market size is expected to reach about $12 billion by 2024. The advantages of CNC machining technology in the manufacturing of medical equipment components have also been fully utilized. The core components of high-end medical equipment, such as medical pumps, CT and MRI scanners, benefit from the high precision, high efficiency and reliability of CNC machining technology.
In terms of biocompatible materials, the compatibility of CNC processing technology and medical device manufacturing has also been widely recognized. According to statistics, the global market for biocompatible materials is expected to reach about $5.5 billion by 2024.
It is worth mentioning that CNC machining technology also supports the manufacture of customized medical parts. This is of great significance for the treatment of rare diseases and rehabilitation of special patients. According to statistics, the global market for customized medical parts is expected to reach about $4.5 billion by 2024.
In summary, the application of CNC machining technology in the medical industry provides a strong guarantee for the improvement of the performance of medical devices and equipment. In the current era of rapid development of science and technology, we have reason to believe that CNC machining technology will play a greater role in the medical industry to help the prosperous development of China's medical cause. With the continuous expansion of the medical device market, the application prospect of CNC machining technology in the medical industry will be broader.
Precision machinery parts processing plays a crucial role in various industries, including aerospace, automotive, medical, and manufacturing.Precision machinery parts have specific requirements to ensure optimal performance.One crucial aspect is the material used for processing. If the hardness of the material being processed surpasses that of the lathe tool, it can potentially cause irreparable damage.Therefore, it is essential to select materials that are compatible with precision machining.
1. Material Strength and Durability
One of the key requirements of precision machinery parts processing is material strength and durability.Machinery parts often undergo significant stress and pressure during operation, and the selected materials must be able to withstand these forces without deforming or breaking.For example, aerospace components require materials with high strength-to-weight ratios, such as titanium alloys, to ensure structural integrity and reliability.
2. Dimensional Stability
Precision machinery parts must maintain their dimensional stability even under extreme operating conditions.The materials used in their processing should possess low thermal expansion coefficients, allowing the parts to retain their shape and size without warping or distorting due to temperature fluctuations.Steels with low thermal expansion coefficients, such as tool steel or stainless steel, are commonly preferred for precision machinery parts subjected to varying thermal conditions.
3.Wear and Corrosion Resistance
Precision machinery parts often interact with other components or environments that can cause wear and corrosion.The materials chosen for their processing should exhibit excellent wear resistance to withstand constant friction and minimize surface damage.Additionally, corrosion resistance is crucial to ensure the longevity of the parts, especially in industries where exposure to moisture, chemicals, or harsh environments is common.Materials such as hardened steel, stainless steel, or certain grades of aluminum alloys are frequently utilized to enhance wear and corrosion resistance.
4.Machinability
Efficient and precise machining is a critical factor in the manufacturing of precision machinery parts.The material selected for processing should possess good machinability, allowing it to be easily cut, drilled, or shaped into the desired form with minimal tool wear.Materials like aluminum alloys with excellent machinability properties are often preferred for their versatility and ease of shaping into complex geometries.
5.Thermal Conductivity
Thermal management is significant in precision machinery parts processing, as excessive heat can adversely affect performance and increase the risk of failure.Materials with high thermal conductivity, such as copper alloys or certain grades of aluminum, help dissipate heat efficiently, preventing localized temperature rise and ensuring optimal operating conditions.
6.Cost-Effectiveness
While meeting the specific requirements is crucial, cost-effectiveness is also an important consideration in precision machinery parts processing.The selected materials should strike a balance between performance and cost, ensuring that the final product remains economically viable without compromising quality.Conducting a cost-benefit analysis and considering factors like material availability, processing complexity, and overall project budget can aid in making informed decisions regarding material selection.
Precision parts processed with stainless steel have the advantages of corrosion resistance, long service life and good mechanical and dimensional stability, and austenitic stainless steel precision parts have been widely used in medical, instrumentation and other precision machinery fields.
The reasons why stainless steel material affects the machining accuracy of parts
The exceptional strength of stainless steel, coupled with its impressive plasticity and noticeable work hardening phenomenon, result in a significant disparity in cutting force when compared to carbon steel. In fact, the cutting force required for stainless steel surpasses that of carbon steel by more than 25%.
At the same time, the thermal conductivity of stainless steel is only one-third of that of carbon steel, and the cutting process temperature is high, which makes the milling process deteriorate.
The growing machining hardening trend observed in stainless steel materials demands our serious attention. During milling, the intermittent cutting process leads to excessive impact and vibration, resulting in substantial wear and collapse of the milling cutter. Furthermore, the use of small-diameter end milling cutters poses a higher risk of breakage. Significantly, the decrease in tool durability during the milling process adversely affects the surface roughness and dimensional accuracy of precision parts machined from stainless steel materials, rendering them unable to meet the required standards.
Stainless steel precision parts processing precision solutions
In the past, traditional machine tools had limited success in machining stainless steel parts, particularly when it came to small precision components. This posed a major challenge for manufacturers. However, the emergence of CNC machining technology has revolutionized the machining process. With the aid of advanced ceramic and alloy coating tools, CNC machining has successfully taken on the complex task of processing numerous stainless steel precision parts. This breakthrough has not only improved the machining accuracy of stainless steel components but has also significantly enhanced the efficiency of the process. As a result, manufacturers can now rely on CNC machining to achieve precise and efficient production of stainless steel precision parts.
As an industry-leading manufacturer in precision machinery parts processing, HONSCN understands the significance of material requirements in delivering exceptional products. We prioritize using high-quality materials that meet all specific requirements, guaranteeing superior performance, durability, and reliability. Our team of experienced professionals meticulously evaluates each project's unique needs, selecting the most suitable materials to ensure customer satisfaction and industry-leading solutions.
In conclusion, precision machinery parts processing demands careful consideration of the materials used. From strength and durability to wear resistance and machinability, each requirement plays a vital role in achieving high-quality products. By understanding and meeting these specific material requirements, manufacturers can produce precision machinery parts that excel in performance, reliability, and longevity. Trust HONSCN for all your precision machinery parts processing needs, as we strive to deliver excellence through meticulous material selection and exceptional manufacturing expertise.
With the increasingly updated processing technology, CNC machining has also undergone a lot of changes. Many experts pointed out that in the future, CNC will be the mainstream processing mode. In the CNC machining process, the tool is the most important, today, we will understand the CNC tool in detail.
A tool is a tool used for cutting in mechanical manufacturing. Generalized cutting tools include both cutting tools and abrasive tools. The vast majority of knives are used for machines, but there are also hand tools. Since the tools used in mechanical manufacturing are basically used to cut metal materials, the term "tool" is generally understood as a metal cutting tool. The cutting tools used for cutting wood are called woodworking tools.
Tool classification
Cutting tools can be divided into five categories according to the form of the workpiece machined surface.
Cutting tools for processing various outer surfaces, including cutting tools for processing various outer surfaces, including turning tools, planing knives, milling cutters, outer surface broach and file, etc.
Hole processing tools, including drill, reaming drill, boring cutter, milling cutter and internal surface broach, etc.
Thread processing tools, including tap, die, automatic opening thread cutting head, thread turning tool and thread milling cutter.
Gear processing tools, including hob, gear shaper cutter, shaving cutter, bevel gear processing tool, etc.
Cutting tools, including inserted circular saw blade, band saw, bow saw, cutting tool and saw blade milling cutter, etc.
In addition, there are combination tools.
Tool structure
The structure of various tools is composed of a clamping part and a working part. The clamping part and working part of the overall structure of the tool are done on the tool body; The working part of the tool (the tooth or blade) is mounted on the tool body.
The clamping part of the tool has two kinds of holes and handles. The tool with hole relies on the inner hole set on the spindle or mandrel of the machine tool, and transmits the torsional torque with the help of the axial key or the end key, such as the cylindrical milling cutter and the sleeve face milling cutter.
The tool with the handle is usually rectangular handle, cylindrical handle and conical handle three kinds. Turning tools, planing tools, etc. are generally rectangular handles; The conical handle withstands the axial thrust with the taper and transmits the torque with the help of friction. Cylindrical shank is generally suitable for smaller twist drill, end mill and other tools, cutting with the help of the friction generated when clamping torque transfer. The shank of many tools with handles is made of low alloy steel, and the working part is made of high speed steel welded to each other.
The basic properties that the tool material should have
1. High hardness
The hardness of the tool material must be higher than the hardness of the workpiece material to be machined, which is the basic feature that the tool material should have.
2. Sufficient strength and toughness
The material of the cutting part of the tool must withstand great cutting force and impact force when cutting. The bending strength and impact toughness reflect the ability of tool material to resist brittle fracture and edge breakage.
3. High wear resistance and heat resistance
The wear resistance of tool materials refers to the ability to resist wear. The higher the hardness of the tool material, the better the wear resistance; The higher the high temperature hardness, the better the heat resistance, the tool material at high temperature resistance to plastic deformation, anti-wear ability is also stronger.
4. Good thermal conductivity
Large thermal conductivity means good thermal conductivity, and the heat capacity generated during cutting is easily transmitted out, thereby reducing the temperature of the cutting part and reducing tool wear.
5. Good technology and economy
In order to facilitate manufacturing, the tool material is required to have good machinability, including forging, welding, cutting, heat treatment, grindability and so on. Economy is one of the important indexes to evaluate and promote the application of new tool materials.
6. Resistance to bonding
Prevent the workpiece and the tool material molecules under the action of high temperature and high pressure adsorption bond.
7. Chemical stability
It means that the tool material is not easy to react chemically with the surrounding medium at high temperature.
Tool coating
Aluminum alloy indexable inserts are now coated with hard or composite layers of titanium carbide, titanium nitride, alumina by chemical vapor deposition. The physical vapor deposition method that is being developed can be used not only for aluminum alloy tools, but also for high-speed steel tools such as drills, hobs, taps and milling cutters. As a barrier that prevents chemical diffusion and heat conduction, the hard coating slows down the wear rate of the tool during cutting, and the life of the coated blade is about 1 to 3 times higher than that of the uncoated blade.
Tool selection is carried out in the human-machine interaction state of NC programming. The tool and handle should be correctly selected according to the machining capacity of the machine tool, the performance of the workpiece material, the processing procedure, the cutting amount and other relevant factors.
The general principle of tool selection: easy installation and adjustment, good rigidity, high durability and accuracy. On the premise of meeting the processing requirements, try to choose a shorter tool handle to improve the rigidity of the tool processing. When selecting the tool, the size of the tool should be adapted to the surface size of the workpiece to be machined.
1. End milling cutter is often used to process the peripheral outline of plane parts.
2. When milling the plane, carbide blade milling cutter should be selected.
3. When processing convex and grooves, choose high-speed steel end milling cutter.
4. When processing the blank surface or roughing the hole, you can choose the corn milling cutter with cemented carbide blade.
5. For the processing of some vertical surface and variable bevel contour, ball end milling cutter, ring milling cutter, conical milling cutter and disk milling cutter are often used.
6. In the processing of free-form surface, because the cutting speed of the end of the ball head tool is zero, so in order to ensure the processing accuracy, the cutting line spacing is generally very dense, so the ball head is often used in the finishing of the surface.
7, flat head tool in the surface processing quality and cutting efficiency are better than the ball head knife, therefore, as long as the premise of ensuring but cutting, whether it is rough surface machining or finishing, should be preferred to choose flat head knife.
8. In the machining center, various tools are installed on the tool library, and the tool selection and tool change are carried out at any time according to the procedure. Therefore, the standard tool handle must be used in order to make the standard tool for drilling, boring, expanding, milling and other processes quickly and accurately installed on the machine spindle or tool library. The number of tools should be reduced as far as possible; After a tool is installed, it should complete all the processing parts that it can carry out; Rough finishing tools should be used separately, even if the same size specifications of the tool; Milling before drilling; Surface finishing is carried out first, and then 2D contour finishing is carried out. Where possible, the automatic tool change function of CNC machine tools should be used as much as possible to improve production efficiency.
Problems encountered in processing aluminum and solutions when processing pure aluminum, easy to stick knife analysis and solutions:
1. Aluminum material is soft in texture and easy to stick at high temperature;
2. Aluminum is not resistant to high temperature, easy to open;
3. Related to processing cutting fluid: good oil lubrication performance; Good water-soluble cooling performance; High dry cutting cost;
4. When processing pure aluminum, the end mill dedicated to aluminum processing should be selected: positive front Angle, sharp cutting edge, large chip discharge slot, 45 degrees or 55 degrees helix Angle;
5. The material of the workpiece and the CNC tool has a greater affinity.
6. Rough front tool processing soft materials.
Recommendation: Machine tool conditions are poor to good requirements are low to high, please use high-speed steel, coated polished carbide, PCD polycrystalline diamond and single crystal diamond.
7. Low speed can be avoided by cutting fluid, high speed oil mist lubrication, the effect can be improved, aluminum alloy suitable
Due to the high temperature, high pressure, high speed, and the parts working in the corrosive fluid medium, the application of difficult to process more and more materials, the automation level of cutting processing and the processing accuracy requirements are getting higher and higher. In order to adapt to this situation, the development direction of the tool will be the development and application of new tool materials; Further develop the vapor deposition coating technology of the tool, and deposit higher hardness coating on the matrix of high toughness and high strength, so as to better solve the contradiction between hardness and strength of the tool material; Further development of indexable tool structure; Improve the manufacturing accuracy of the tool, reduce the difference in product quality, and optimize the use of the tool.How to choose CNC aluminum alloy machining tool.
The materials are wrong, all in vain! In order to produce satisfactory products, the choice of materials is the most basic step and the most critical step. CNC machining can choose a lot of materials, including metal materials, non-metallic materials and composite materials.
Common metal materials include steel, aluminum alloy, copper alloy, stainless steel and so on. Non-metallic materials are engineering plastics, nylon, bakelite, epoxy resin and so on. Composite materials are fiber reinforced plastic, carbon fiber reinforced epoxy resin, glass fiber reinforced aluminum and so on.
Different materials have different physical and mechanical properties, and the correct selection of the right material is critical to the performance, accuracy and durability of the part. Starting from my own experience, this article will share with you how to choose low cost and suitable materials among many processing materials.
First, we need to determine the end use of the product and its parts. For example, medical equipment needs to be disinfected, lunch boxes need to be heated in the microwave oven, bearings, gears, etc., need to be used for load-bearing and multiple rotational friction.
After determining the use, starting from the actual application needs of the product, the use of the product is investigated, and its technical requirements and environmental requirements are analyzed, and these needs are transformed into the characteristics of the material. For example, parts of medical equipment may have to withstand the extreme heat of an autoclave; Bearings, gears and other materials have requirements for wear resistance, tensile strength and compressive strength. Mainly can be analyzed from the following points:
01 Environmental Requirements
Analyze the actual use scenario and environment of the product; For example: What is the long-term working temperature of the product, the highest/lowest working temperature, respectively, belonging to high temperature or low temperature? Are there UV protection requirements indoors or outdoors? Is it in a dry environment or a humid, corrosive environment? Etc.
02 Technical Requirements
According to the technical requirements of the product, the required capabilities are analyzed, which can cover a range of application-related factors. Such as: the product needs to have conductive, insulating or anti-static which of the capabilities? Is heat dissipation, thermal conductivity, or flame retardant required? Do you need exposure to chemical solvents? Etc.
03 Physical Performance requirements
Analyze the required physical properties of the part based on the intended use of the product and the environment in which it will be used. For parts subjected to high stress or wear, factors such as strength, toughness and wear resistance are critical; For parts exposed to high temperatures for a long time, good thermal stability is required.
04 Appearance and surface treatment requirements
The market acceptance of the product depends largely on the appearance, the color and transparency of different materials are different, the finish and the corresponding surface treatment are also different. Therefore, according to the aesthetic requirements of the product, the processing materials should be selected.
05 Processing performance considerations
The machining properties of the material will affect the manufacturing process and accuracy of the part. For example, although stainless steel is rust resistant and corrosion resistant, its hardness is high, and it is easy to wear the tool during processing, resulting in very high processing costs, and it is not a good material to process. The plastic hardness is low, but it is easy to soften and deform during the heating process, and the stability is poor, which needs to be selected according to actual needs.
Because the actual application requirements of the product are composed of a number of contents, there may be multiple materials that meet the application requirements of a product; Or the situation where the optimal selection of different application requirements corresponds to different materials; We may end up with several materials that meet our specific requirements. Therefore, once the desired material properties are clearly defined, the remaining selection step is to search for the material that best matches those properties.
The selection of candidate materials begins with a review of material properties data, of course, it is not possible to investigate thousands of applied materials, and there is no need to do so. We can start from the material category, and first decide whether we need metal materials, non-metallic materials or composite materials. Then the previous analysis results, corresponding to the material characteristics, narrow the selection of candidate materials. Finally, the material cost information is used to select the most suitable material for the product from a number of candidate materials.
At present, Honscn has selected and launched a number of materials suitable for processing, which have been a popular choice for our customers.
Metallic materials refer to materials with properties such as luster, ductility, easy conduction and heat transfer. Its performance is mainly divided into four aspects, namely: mechanical properties, chemical properties, physical properties, process properties. These properties determine the scope of application of the material and the rationality of the application, which is an important reference for us to choose metal materials.The following will introduce two types of metal materials, aluminum alloy and copper alloy, which have different mechanical properties and processing characteristics.
There are more than 1000 aluminum alloy grades registered in the world, each brand name and meaning are different, different grades of aluminum alloy in hardness, strength, processability, decoration, corrosion resistance, weldability and other mechanical properties and chemical properties there are obvious differences, each has its strengths and weaknesses.
hardness
Hardness refers to its ability to resist scratches or indentations. It has a direct relationship with the chemical composition of the alloy, and different states have different effects on the hardness of aluminum. The hardness directly affects the cutting speed and the type of tool material that can be used in CNC machining.
From the highest hardness that can be achieved, 7 series > 2 series > 6 series > 5 series > 3 series > 1 series.
intensity
Strength refers to its ability to resist deformation and fracture, commonly used indicators include yield strength, tensile strength and so on.
It is an important factor that must be considered in product design, especially when aluminum alloy components are used as structural parts, the appropriate alloy should be selected according to the pressure under.
There is a positive relationship between hardness and strength: the strength of pure aluminum is the lowest, and the strength of 2 series and 7 series heat-treated alloys is the highest.
density
Density refers to its mass per unit volume and is often used to calculate the weight of a material.
Density is an important factor for a variety of different applications. Depending on the application, the density of aluminum will have a significant impact on how it is used. For example, lightweight, high-strength aluminum is ideal for construction and industrial applications.
The density of aluminum is about 2700kg/m³, and the density value of different types of aluminum alloy does not change much.
Corrosion resistance
Corrosion resistance refers to its ability to resist corrosion when in contact with other substances. It includes chemical corrosion resistance, electrochemical corrosion resistance, stress corrosion resistance and other properties.
Corrosion resistance selection principle should be based on its use occasion, high-strength alloy used in a corrosive environment, must use a variety of anti-corrosion composite materials.
In general, the corrosion resistance of series 1 pure aluminum is the best, series 5 performs well, followed by series 3 and 6, and series 2 and 7 are poor.
processability
The machinability includes formability and machinability. Because formability is related to the state, after selecting the grade of aluminum alloy, it is also necessary to consider the strength range of each state, usually high strength materials are not easy to form.
If the aluminum is to be bent, drawn, deep drawing and other forming processes, the formability of the fully annealed material is the best, and on the contrary, the formability of the heat-treated material is the worst.
The machinability of aluminum alloy has a great relationship with the alloy composition, usually higher strength aluminum alloy machinability is better, on the contrary, low strength machinability is poor.
For molds, mechanical parts and other products that need to be cut, the machinability of aluminum alloy is an important consideration.
Welding and bending properties
Most aluminum alloys are welded without problems. In particular, some 5 series aluminum alloys are specially designed for welding considerations; Relatively speaking, some 2 series and 7 series aluminum alloys are more difficult to weld.
In addition, the 5 series aluminum alloy is also the most suitable for bending a class of aluminum alloy products.
Decorative property
When aluminum is applied to decoration or some specific occasions, its surface needs to be processed to obtain the corresponding color and surface organization. This situation requires us to focus on the decorative properties of materials.
Aluminum surface treatment options include anodizing and spraying. In general, materials with good corrosion resistance have excellent surface treatment properties.
Other characteristics
In addition to the above characteristics, there are electrical conductivity, wear resistance, heat resistance and other properties, we need to consider more in the selection of materials.
Orichalcum
Brass is an alloy of copper and zinc. Brass with different mechanical properties can be obtained by changing the content of zinc in brass. The higher the content of zinc in brass, the higher its strength and slightly lower plasticity.
The zinc content of the brass used in the industry does not exceed 45%, and the zinc content will be brittle and make the alloy performance worse. Adding 1% tin to brass can significantly improve the resistance of brass to seawater and Marine atmosphere corrosion, so it is called "navy brass".
Tin can improve the machinability of brass. Lead brass is commonly referred to as easy to cut national standard copper. The main purpose of adding lead is to improve the machinability and wear resistance, and lead has little effect on the strength of brass. Carving copper is also a kind of lead brass.
Most brasses have good color, processability, ductility, and are easy to electroplate or paint.
Red copper
Copper is pure copper, also known as red copper, has good electrical and thermal conductivity, excellent plasticity, easy hot pressing and cold pressure processing, can be made into plates, rods, tubes, wires, strips, foil and other copper.
A large number of products that require good electrical conductivity such as electrocorroded copper and conductive bars for the manufacture of EDM, magnetic instruments and instruments that must be resistant to magnetic interference, such as compass and aviation instruments.
No matter what kind of material, a single model basically can not meet all the performance requirements of a product at the same time, and it is not necessary. We should set the priority of various performance according to the performance requirements of the product, the use of the environment, the processing process and other factors, reasonable selection of materials, and reasonable control of costs under the premise of ensuring performance.
Starts with hardware, doesn't stop with hardware. Honscn is committed to providing fastener/CNC industry chain one-stop service.
Contact: Ada Li
Tel: +86 17722440307
WhatsApp: +86 17722440307
E-mail: Ada@honscn.com
Add: 4F, No. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China