cnc aluminum part of Honscn Co.,Ltd is high-quality, exquisitely and practically designed. The product is designed by the professional and innovative design team and crafted by skillful and experienced workers, reflecting the finest workmanship in the industry. What’s more, the designs vary with the changes in the market in order to cater to the latest market needs.
HONSCN has strived to improve the brand awareness and social influence of the products with a view to increase the targeted market share, which is finally achieved by making our products stand out from the other counterparts thanks to our HONSCN branded products' original design, advanced manufacturing techniques adopted and sound brand values that are clearly delivered in them, which contributes to further increase the influence of our brand.
We're so confident in our products and services that we offer a Satisfaction Guarantee: We guarantee that cnc aluminum part will be personalized as requested and free of defects or we will replace, exchange or refund the order. (For detailed information please contact the Custom Service at Honscn.)
With the arrival of the world's fourth industrial revolution, and the continuous development of science and technology and social production, mechanical manufacturing technology has undergone profound changes, the structure of mechanical products is more and more reasonable, and its performance, accuracy and efficiency are increasingly improved, so the production equipment of processing mechanical products has put forward high performance, high precision and high automation requirements. In order to solve the problem that ordinary machine tools can not be produced, to achieve single and small batch production, especially the automatic processing of some complex parts, CNC machining came into being.
Although, at present, China has become a processing country, precision parts processing plants all over the country. According to the data of the General Administration of Customs of China, in January and February 2023, the cumulative export volume of China's machine tools reached 2364123 units (2,364,100 units), from high-end CNC customized precision parts to ordinary standard products can achieve standardized mass production, the application of CNC technology can realize the automatic processing of parts and improve production efficiency. Especially in the automotive manufacturing, aerospace, electronic equipment manufacturing and other fields, the application of CNC technology has great potential. The application of CNC technology can realize the automatic processing of parts and improve production efficiency. Especially in the automotive manufacturing, electronic equipment manufacturing and other fields, the application of CNC technology has great potential.
CNC machining is widely used in the field of automotive parts, involving the engine, transmission, chassis, braking system, steering system and other aspects. However, no matter in any field of precision machining, achieving high precision and high speed is an important competitive means to obtain user orders.
The following are some specific applications of CNC machining in the field of automotive parts:
Engine parts machining: CNC machining can be used to manufacture various parts of the engine such as cylinder block, crankshaft, connecting rod, valve seat, etc., which require high precision and high strength.
1.Transmission parts processing: CNC machining can be used to manufacture various parts of the transmission system such as transmission gears, clutches, transmission shafts, etc., which require high precision and high strength.
2.Brake parts processing: CNC machining can be used to manufacture various parts of the brake system such as brake discs, brake pads, brakes, etc., which require high precision and high quality.
3.Steering parts processing: CNC machining can be used to manufacture various parts of the steering system such as steering gear, steering rod, steering machine, etc., these parts need high precision and high strength.
With the continuous development of CNC machining technology and the expansion of application fields, whether it is automobile body design or automobile internal electronic parts processing, the application range of CNC custom machining technology in the field of automation will be more and more extensive. In the future, CNC machining technology will continue to play an important role in the automotive manufacturing field.
The success or failure of aerospace operations depends on the accuracy, precision and quality of the components used. For this reason, aerospace companies utilize advanced manufacturing techniques and processes to ensure that their components fully meet their needs. While new manufacturing methods such as 3D printing are rapidly gaining popularity in the industry, traditional manufacturing methods such as machining continue to play a key role in the production of parts and products for aerospace applications. Such as better CAM programs, application-specific machine tools, enhanced materials and coatings, and improved chip control and vibration damping - have significantly changed the way aerospace companies manufacture critical aerospace components. However, sophisticated equipment alone is not enough. Manufacturers must have the expertise to overcome the material processing challenges of the aerospace industry.
The manufacture of aerospace parts first requires specific material requirements. These parts typically require high strength, low density, high thermal stability and corrosion resistance to handle extreme operating conditions.
Common aerospace materials include:
1. High strength aluminum alloy
High-strength aluminum alloys are ideal for aircraft structural parts because of their light weight, corrosion resistance and ease of processing. For example, 7075 aluminum alloy is widely used in the manufacture of aerospace parts.
2. titanium alloy
Titanium alloys have excellent strength to weight ratio and are widely used in aircraft engine parts, fuselage components and screws.
3. Superalloy
Superalloys maintain strength and stability at high temperatures and are suitable for engine nozzles, turbine blades and other high-temperature parts.
4. Composite material
Carbon fiber composites perform well in reducing structural weight, increasing strength and reducing corrosion, and are commonly used in the manufacture of casings for aerospace parts and spacecraft components.
Process planning and design
Process planning and design are required before processing. At this stage, it is necessary to determine the overall processing scheme according to the design requirements of the parts and material characteristics. This includes determining the process of processing, the choice of machine tool equipment, the selection of tools, etc. At the same time, it is necessary to carry out detailed process design, including the determination of cutting profile, cutting depth, cutting speed and other parameters.
Material preparation and cutting process
In the process of aerospace parts processing, the first need to prepare working materials. Usually, the materials used in aviation parts include high-strength alloy steel, stainless steel, aluminum alloy and so on. After the material preparation is completed, the cutting process is entered.
This step involves the selection of machine tools, such as CNC machine tools, lathes, milling machines, etc., as well as the selection of cutting tools. The cutting process needs to strictly control the feed speed, cutting speed, cutting depth and other parameters of the tool to ensure the dimensional accuracy and surface quality of the parts.
Precision machining process
Aerospace components are usually very demanding in terms of size and surface quality, so precision machining is an indispensable step. At this stage, it may be necessary to use high-precision processes such as grinding and EDM. The goal of the precision machining process is to further improve the dimensional accuracy and surface finish of the parts, ensuring their reliability and stability in the aviation field.
Heat treatment
Some aerospace parts may require heat treatment after precision machining. The heat treatment process can improve the hardness, strength and corrosion resistance of the parts. This includes heat treatment methods such as quenching and tempering, which are selected according to the specific requirements of the parts.
Surface coating
In order to improve the wear resistance and corrosion resistance of aviation parts, surface coating is usually required. Coating materials can include cemented carbide, ceramic coating, etc. Surface coatings can not only improve the performance of parts, but also extend their service life.
Assembly and testing
Do parts assembly and inspection. At this stage, the parts need to be assembled in accordance with the design requirements to ensure the accuracy of the match between the various parts. At the same time, rigorous testing is required, including dimensional testing, surface quality testing, material composition testing, etc., to ensure that parts meet aviation industry standards.
Strict quality control: The quality control requirements of aviation parts are very strict, and strict testing and control are required at each processing stage of aviation parts to ensure that the quality of parts meets the standards.
High precision requirements: Aerospace components typically require very high accuracy, including dimensional accuracy, shape accuracy and surface quality. Therefore, high-precision machine tools and tools need to be used in the processing process to ensure that the parts meet the design requirements.
Complex structure design: Aviation parts often have complex structures, and it is necessary to use multi-axis CNC machine tools and other equipment to meet the processing needs of complex structures.
High temperature resistance and high strength: aviation parts usually work in harsh environments such as high temperature and high pressure, so it is necessary to choose high temperature resistance and high strength materials, and carry out the corresponding heat treatment process.
Overall, aerospace parts processing is a highly technology-intensive, precision demanding process that requires strict operating processes and advanced processing equipment to ensure that the quality and performance of the final parts can meet the stringent requirements of the aviation sector.
Aerospace parts processing is challenging, mainly in the following areas:
Complex geometry
Aerospace parts often have complex geometrics that require high-precision machining to meet design requirements.
Super alloy processing
The processing of superalloys is difficult and requires special tools and processes to handle these hard materials.
Large parts
The parts of the spacecraft are usually very large, requiring large CNC machine tools and special processing equipment.
Quality control
The aerospace industry is extremely demanding on part quality and requires rigorous quality control and inspection to ensure that every part meets the standards.
In aerospace parts processing, precision and reliability are key. A deep understanding and fine control of materials, processes, precision and machining difficulties is the key to manufacturing high-quality aerospace parts.
CNC metalworking is replacing other manufacturing technologies in multiple industries. The medical field is considered an area where mistakes are rare, and the same rules apply when it comes to manufacturing medical parts, because human lives are at stake in this field, and even small mistakes can lead to serious health problems or even death. Therefore, the machining techniques that machinists use to produce medical parts must support tight tolerances and high-precision measurements.
CNC metalworking is growing in popularity due to its ability to mass-produce detailed and precise results, which has led to an increase in the number of producers using CNC machines in the industry.
CNC machining is a manufacturing method in which the tool movement is controlled by pre-programmed computer software. All medical products can be manufactured accurately and quickly with the help of CNC milling and turning. Let's look at the main advantages of CNC machining demand in the healthcare industry:
No fixed tool
CNC machining is unmatched in terms of fast turnaround and minimal investment in small batch production, even in disposable products. Parts for the medical industry often have to be manufactured quickly and in small batches. At the same time, CNC metalworking allows parts to be manufactured without dedicated tools, which can extend the manufacturing process but provide excellent quality and precision even without the use of tools.
No quantity limit
After you create a digital CAD (Computer Aided Design) file, you can easily build a cutting program from it at the touch of a button. The coding application can manufacture a single part or any number of parts with the highest precision and accuracy. This is a huge benefit when creating disposable or disposable custom parts, such as highly specialized medical devices, appliances, equipment, prosthetics, and other medical or surgical products. Other procedures require a minimum order size to obtain the required raw materials, making certain projects impractical, while CNC machining does not require a minimum order size.
High tolerance
Many medical types of equipment require a large tolerance range, and with CNC machines, this is easily achieved. The surface finish is usually very good and requires minimal post-treatment, saving time and money, but this is not the most important consideration. In general, the most important thing to remember about medical supplies and equipment is that they must be fit for their purpose, and any deviation from the standard can mean disaster.
Fast machine
CNC machines are faster and can work 24 hours a day, 365 days a year. Apart from routine maintenance, repairs and upgrades are the only time manufacturers stop using equipment.
Digital CAD files are lightweight and flexible
Product designers, medical specialists, and manufacturing professionals can quickly and easily transfer digital programs from one location to another. The technology significantly improves CNC machining capabilities to produce high-quality specialty medical devices and equipment solutions, regardless of geographic location, whenever and wherever they are needed. This feature of CNC machining is very convenient, especially in time-critical medical environments.
CNC machining has revolutionized the way medical devices and devices are designed, manufactured, personalized, and used. The precision, customization and speed of CNC machining transform patient care, enabling personalized treatment and improving surgical outcomes.
The technology paves the way for breakthrough innovations in prosthetics, devices, and therapeutics, and drives advances in many areas of healthcare.
CNC machining brings many advantages to the medical field, including:
Precision and accuracy
The operation precision of CNC machine tools is extremely high. This level of precision is essential for the production of surgical instruments, implants and micro-devices used in minimally invasive surgery. The precision and consistency provided by CNC machining improves performance during medical procedures and reduces the risk of complications.
This is especially important for surgeons who rely on ultra-sophisticated and reliable instruments to perform delicate tasks. From scalpel handles to robotic surgical assistants, CNC machining provides high-quality tools that improve accuracy and patient safety.
Customization and personalization
CNC machining enables the creation of personalized medical parts and devices based on a patient's unique anatomy. This ability makes it possible to create personalized orthopedic implants, dentures, hearing AIDS and other devices.
Using patient-specific data such as 3D scans or MRI images, CNC machines can precisely create items that fit perfectly to the patient's body. This improves comfort, function and treatment effectiveness, and accelerates patient recovery.
Complex shape and structure
CNC machining can produce complex geometries and complex internal structures that are often difficult to achieve with other manufacturing methods. The ability to precisely carve internal cavities, channels, and delicate features is especially valuable when manufacturing implants, microdevices, and surgical instruments.
Rapid prototyping
Prototyping allows medical engineers and designers to create functional models of parts and devices, enabling them to evaluate design, assembly, and functionality before starting production. The combination of computer-aided design (CAD) software and CNC machine tools allows digital designs to be quickly translated into physical prototypes.
This allows for iterative design improvements and helps ensure that medical devices are thoroughly tested and optimized prior to release. In an evolving field, rapid prototyping can enhance innovation and help bring new medical advances to market faster.
Process optimization
The integration of CNC machining with advanced technologies such as automation and artificial intelligence (AI) minimizes errors and enables automated quality control processes. This increases efficiency, reduces production time and improves product quality, all of which contribute to improved patient outcomes.
In addition, automated CNC systems can operate continuously with minimal human-machine interaction between operations. Some CNC machines are also capable of multi-axis machining and performing tasks on different surfaces of parts at the same time.
By reprogramming machines, manufacturers can quickly switch between producing one type of part and another. This reduces conversion times and means that different parts can be made on the same machine in a single shift. These features help speed up production cycles, reduce downtime, and increase overall production.
Flexible material selection
CNC machining is suitable for a wide range of materials, including metals, plastics and composites. This versatility enables manufacturers to consider factors such as biocompatibility, durability and functionality to select the most appropriate material for a specific medical application.
Cost saving
Although industrial CNC machines can be expensive, they offer significant cost saving opportunities in the long run. By eliminating the need for dedicated jigs, fixtures, and dedicated tools for each part, CNC machining helps minimize setup time, simplify production, and reduce manufacturing costs.
The technology also reduces waste and costs through material optimization. This is especially important in the medical field, as implants are often made with high-value materials such as titanium and platinum. The increased efficiency and productivity of CNC machining also contribute to cost savings over time.
Due to the critical nature of medical devices and components, the medical industry requires high-quality and high-precision products. Therefore, CNC machining is widely used in medical applications. Below, we will introduce what CNC machining medical products are?
1. Medical implants
Orthopedic implants: CNC machining is commonly used to manufacture orthopedic implants, such as hip and knee replacements.
Dental implants: Use CNC machining to manufacture precise and customized dental implants.
2. Electronic medical equipment
MRI components: Some components of magnetic resonance imaging (MRI) machines, such as structures, brackets, and housings, are often machined using CNC.
Diagnostic equipment enclosures: CNC machining is used to manufacture enclosures and housings for a wide range of medical diagnostic equipment, ensuring precise dimensions, durability, and compatibility with electronic components.
3. Medical surgical instruments
Scalpels and blades: CNC machining is used to produce surgical instruments such as scalpels and blades.
Tweezers and clamps: Surgical instruments with complex designs, such as tweezers and clamps, are usually CNC machined to achieve the desired accuracy.
4. Prosthetics and orthotics
Custom prosthetic components: CNC machining is used to manufacture custom prosthetic components, including acceptance chamber components, joints, and connectors.
Orthopedic brackets: Components of orthopedic brackets that provide support and alignment to various parts of the body can be CNC machined.
5. Endoscope assembly
Endoscope housings and parts: CNC machining is used to produce parts of endoscope equipment, including housings, connectors, and structural parts.
6. Prototype medical equipment
Prototyping components: CNC machining is widely used for rapid prototyping of various medical devices.
Finally, machining medical devices is a process that requires a high level of precision and accuracy. Therefore, the technology is very suitable for CNC machining.
Honscn Precision is a reliable manufacturer of medically critical components for surgical instruments and tools as well as medical device prototyping. With 20 years of experience in CNC manufacturing, we are driven by the need to ensure the closest tolerances and accuracy for each machined part. Our skilled mechanics can tailor machined parts designs to the highest standards for all aspects of the medical industry. Do you want to start your CNC machining project at Honscn Precision?Click here to start your custom service
Contact: Ada Li
Tel: +86 17722440307
WhatsApp: +86 17722440307
E-mail: Ada@honscn.com
Add: 4F, No. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China