تسترشد شركة Honscn Co.,Ltd بالمفاهيم والقواعد المشتركة، وتقوم بتنفيذ إدارة الجودة على أساس يومي لتقديم أجزاء آلات المركز التي تلبي توقعات العملاء. تعتمد مصادر المواد لهذا المنتج على المكونات الآمنة وإمكانية تتبعها. جنبًا إلى جنب مع موردينا ، يمكننا ضمان المستوى العالي من الجودة والموثوقية لهذا المنتج.
على مر السنين ، قمنا بجمع ملاحظات العملاء ، وتحليل ديناميكيات الصناعة ، ودمج مصدر السوق. في النهاية ، نجحنا في تحسين جودة المنتج. بفضل ذلك، HONSCNلقد انتشرت شعبية المنتج على نطاق واسع وتلقينا جبالًا من التقييمات الرائعة. في كل مرة يتم فيها إطلاق منتجنا الجديد للجمهور ، يكون هناك طلب كبير عليه دائمًا.
يتوفر التخصيص لأجزاء الآلات المركزية والتسليم السريع في Honscn. إلى جانب ذلك ، فإن الشركة مكرسة لتقديم تسليم المنتج في الوقت المناسب.
تلعب معالجة أجزاء الآلات الدقيقة دورًا حاسمًا في مختلف الصناعات، بما في ذلك الطيران والسيارات والطب والتصنيع. ولأجزاء الآلات الدقيقة متطلبات محددة لضمان الأداء الأمثل. وأحد الجوانب الحاسمة هو المواد المستخدمة للمعالجة. إذا تجاوزت صلابة المادة التي تتم معالجتها صلابة أداة المخرطة، فمن المحتمل أن تسبب ضررًا لا يمكن إصلاحه. لذلك، من الضروري اختيار المواد المتوافقة مع الآلات الدقيقة.
1 قوة المواد والمتانة
أحد المتطلبات الأساسية لمعالجة أجزاء الآلات الدقيقة هو قوة المواد ومتانتها. غالبًا ما تخضع أجزاء الآلات لضغوط وضغط كبير أثناء التشغيل، ويجب أن تكون المواد المختارة قادرة على تحمل هذه القوى دون تشوه أو كسر. على سبيل المثال، تتطلب مكونات الفضاء الجوي مواد مع نسب قوة إلى وزن عالية، مثل سبائك التيتانيوم، لضمان السلامة الهيكلية والموثوقية.
2 الاستقرار الأبعاد
يجب أن تحافظ أجزاء الآلات الدقيقة على ثبات أبعادها حتى في ظل ظروف التشغيل القاسية. ويجب أن تمتلك المواد المستخدمة في معالجتها معاملات تمدد حراري منخفضة، مما يسمح للأجزاء بالحفاظ على شكلها وحجمها دون تزييفها أو تشويهها بسبب تقلبات درجات الحرارة. الفولاذ ذو التمدد الحراري المنخفض تُفضل المعاملات، مثل فولاذ الأدوات أو الفولاذ المقاوم للصدأ، بشكل شائع لأجزاء الآلات الدقيقة المعرضة لظروف حرارية مختلفة.
3. مقاومة التآكل والتآكل
غالبًا ما تتفاعل أجزاء الآلات الدقيقة مع المكونات أو البيئات الأخرى التي يمكن أن تسبب التآكل والتآكل. ويجب أن تظهر المواد المختارة لمعالجتها مقاومة تآكل ممتازة لتحمل الاحتكاك المستمر وتقليل تلف السطح. بالإضافة إلى ذلك، تعد مقاومة التآكل أمرًا بالغ الأهمية لضمان طول عمر الأجزاء. ، خاصة في الصناعات التي يكون فيها التعرض للرطوبة أو المواد الكيميائية أو البيئات القاسية أمرًا شائعًا. يتم استخدام مواد مثل الفولاذ المقسى أو الفولاذ المقاوم للصدأ أو درجات معينة من سبائك الألومنيوم بشكل متكرر لتعزيز مقاومة التآكل والتآكل.
4.القابلية للتصنيع
تعد المعالجة الفعالة والدقيقة عاملاً حاسماً في تصنيع أجزاء الآلات الدقيقة. يجب أن تتمتع المواد المختارة للمعالجة بقابلية تصنيع جيدة، مما يسمح بقطعها أو حفرها أو تشكيلها بسهولة إلى الشكل المطلوب مع الحد الأدنى من تآكل الأدوات. مواد مثل سبائك الألومنيوم غالبًا ما يتم تفضيل خصائص التصنيع الممتازة لتعدد استخداماتها وسهولة تشكيلها في أشكال هندسية معقدة.
5. الموصلية الحرارية
تعد الإدارة الحرارية أمرًا مهمًا في معالجة أجزاء الآلات الدقيقة، حيث يمكن أن تؤثر الحرارة الزائدة سلبًا على الأداء وتزيد من خطر الفشل. تساعد المواد ذات الموصلية الحرارية العالية، مثل سبائك النحاس أو درجات معينة من الألومنيوم، على تبديد الحرارة بكفاءة، مما يمنع ارتفاع درجة الحرارة الموضعية و ضمان ظروف التشغيل المثلى.
6. فعالية التكلفة
في حين أن تلبية المتطلبات المحددة أمر بالغ الأهمية، فإن فعالية التكلفة تعد أيضًا اعتبارًا مهمًا في معالجة أجزاء الآلات الدقيقة. يجب أن تحقق المواد المختارة توازنًا بين الأداء والتكلفة، مما يضمن بقاء المنتج النهائي قابلاً للتطبيق اقتصاديًا دون المساس بالجودة. يمكن أن يساعد تحليل الفوائد والنظر في عوامل مثل توفر المواد وتعقيد المعالجة والميزانية الإجمالية للمشروع في اتخاذ قرارات مستنيرة بشأن اختيار المواد.
تتميز الأجزاء الدقيقة المعالجة بالفولاذ المقاوم للصدأ بمزايا مقاومة التآكل وعمر الخدمة الطويل والاستقرار الميكانيكي والأبعاد الجيد، وقد تم استخدام الأجزاء الدقيقة من الفولاذ المقاوم للصدأ الأوستنيتي على نطاق واسع في المجالات الطبية والأجهزة وغيرها من مجالات الآلات الدقيقة.
الأسباب التي تجعل مادة الفولاذ المقاوم للصدأ تؤثر على دقة تصنيع الأجزاء
إن القوة الاستثنائية للفولاذ المقاوم للصدأ، إلى جانب اللدونة الرائعة وظاهرة تصلب العمل الملحوظة، تؤدي إلى تباين كبير في قوة القطع بالمقارنة مع الفولاذ الكربوني. في الواقع، قوة القطع المطلوبة للفولاذ المقاوم للصدأ تفوق قوة القطع للفولاذ الكربوني بأكثر من 25%.
وفي الوقت نفسه، فإن الموصلية الحرارية للفولاذ المقاوم للصدأ تبلغ ثلث التوصيل الحراري للفولاذ الكربوني فقط، وتكون درجة حرارة عملية القطع مرتفعة، مما يؤدي إلى تدهور عملية الطحن.
يتطلب اتجاه تصلب الآلات المتزايد الذي لوحظ في مواد الفولاذ المقاوم للصدأ اهتمامنا الجاد. أثناء الطحن، تؤدي عملية القطع المتقطعة إلى تأثير واهتزاز مفرطين، مما يؤدي إلى تآكل كبير وانهيار قاطع الطحن. علاوة على ذلك، فإن استخدام قواطع الطحن ذات القطر الصغير يشكل خطرًا أكبر للكسر. بشكل ملحوظ، يؤثر الانخفاض في متانة الأداة أثناء عملية الطحن سلبًا على خشونة السطح ودقة الأبعاد للأجزاء الدقيقة المصنعة من مواد الفولاذ المقاوم للصدأ، مما يجعلها غير قادرة على تلبية المعايير المطلوبة.
معالجة الأجزاء الدقيقة من الفولاذ المقاوم للصدأ بحلول دقيقة
في الماضي، حققت الأدوات الآلية التقليدية نجاحًا محدودًا في تصنيع الأجزاء المصنوعة من الفولاذ المقاوم للصدأ، خاصة عندما يتعلق الأمر بالمكونات الدقيقة الصغيرة. وقد شكل هذا تحديًا كبيرًا للمصنعين. ومع ذلك، فإن ظهور تكنولوجيا التصنيع باستخدام الحاسب الآلي قد أحدث ثورة في عملية التصنيع. بمساعدة أدوات طلاء السيراميك والسبائك المتقدمة، نجحت الآلات CNC في تولي المهمة المعقدة المتمثلة في معالجة العديد من الأجزاء الدقيقة المصنوعة من الفولاذ المقاوم للصدأ. لم يؤدي هذا الإنجاز إلى تحسين دقة تصنيع مكونات الفولاذ المقاوم للصدأ فحسب، بل أدى أيضًا إلى تعزيز كفاءة العملية بشكل كبير. ونتيجة لذلك، يمكن للمصنعين الآن الاعتماد على التصنيع باستخدام الحاسب الآلي لتحقيق إنتاج دقيق وفعال للأجزاء الدقيقة المصنوعة من الفولاذ المقاوم للصدأ.
كشركة مصنعة رائدة في مجال معالجة أجزاء الآلات الدقيقة، HONSCN يفهم أهمية متطلبات المواد في تقديم منتجات استثنائية. نحن نعطي الأولوية لاستخدام مواد عالية الجودة تلبي جميع المتطلبات المحددة، مما يضمن الأداء الفائق والمتانة والموثوقية. يقوم فريقنا من المحترفين ذوي الخبرة بتقييم الاحتياجات الفريدة لكل مشروع بدقة، واختيار المواد الأكثر ملاءمة لضمان رضا العملاء والحلول الرائدة في الصناعة.
في الختام، تتطلب معالجة أجزاء الآلات الدقيقة دراسة متأنية للمواد المستخدمة. بدءًا من القوة والمتانة وحتى مقاومة التآكل والقدرة على التصنيع، يلعب كل متطلبات دورًا حيويًا في تحقيق منتجات عالية الجودة. من خلال فهم هذه المتطلبات المادية المحددة وتلبيتها، يمكن للمصنعين إنتاج أجزاء آلات دقيقة تتفوق في الأداء والموثوقية وطول العمر. يثق HONSCN لجميع احتياجات معالجة أجزاء الآلات الدقيقة الخاصة بك، حيث نسعى جاهدين لتحقيق التميز من خلال الاختيار الدقيق للمواد وخبرة التصنيع الاستثنائية.
1. ظاهرة الخلل عند تغيير السكين، يعلق المعالج ولا يمكنه تغيير السكين. يتم إزاحة موضع المناور لتغيير السكين، ويتم تغيير السكين.2 تحليل الأخطاء وعلاجها
2.1 مبدأ تغيير الأداة مركز المعالجة عبارة عن مجلة أداة دوارة، وآلية تغيير الأداة هي من نوع الكامة. تتم عملية تغيير الأداة كما يلي: (1) اكتب m06t01 لبدء تغيير الأداة ودورة اختيار الأداة.
(2) سيتوقف المغزل عند نقطة توقف المغزل الموجهة، ويتوقف سائل التبريد، ويتحرك المحور z إلى موضع تغيير الأداة (النقطة المرجعية الثانية). (3) حدد الأداة. بعد أن يقوم NC بتجميعها إلى PLC وفقًا للأمر t، ابدأ في تحديد الأداة. يقوم محرك مجلة الأداة بتدوير وتدوير رقم الأداة المستهدفة إلى نقطة تغيير الأداة في مجلة الأداة. لاحظ أن الأمر t هو موضع غلاف الأداة لمجلة الأداة في هذا الوقت. (4) يقوم محرك تغيير الأداة بتشغيل آلية الكامة لتدوير 90 درجة من موضع الانتظار للإمساك بالأداة في غلاف الأداة الفعال والأداة في مغزل. في الوقت نفسه، اكتشف التغير في حالة مفتاح القرب لآلية الكامة، ويرسل مخرج PMC أمر فك الأداة، ويتم تشغيل أداة فك غلاف أداة مجلة الأداة وصمام الملف اللولبي لأداة المغزل، وتستمر الكاميرا في العمل قم بالتدوير، وادفع المناور لأسفل، وادفع مقبض الأداة لأسفل واستعد للاستبدال. كما هو مبين في الشكل 1.
(5) يدور المناور 180 درجة لتبديل الأداة، وتستمر الكاميرا في التحرك لأعلى، وتثبيت الأداة في المغزل، وتثبيت الأداة على المغزل الأصلي في غلاف الأداة عند موضع تغيير الأداة بمخزن الأداة. في الوقت نفسه، يرسل مفتاح الكشف أمرًا لتشديد الأداة إلى PMC، ويفقد صمام الملف اللولبي الطاقة، ويتم تثبيت مقبض أداة العمود، ويتراجع زنبرك الفراشة، ويتم تثبيت أداة المغزل. (6) قم بالتغيير إلى المناور، تابع للتدوير 90، والتوقف عن إكمال مجموعة من إجراءات تغيير الأداة.2.2 تحليل الأخطاء
قم بتغيير الأداة إلى الخطوة الرابعة من 2.1. أداة تغيير الأداة عالقة، وتم فك عمود الدوران للنفخ، ولكن لا يمكن سحب الأداة للخارج. قم بقطع الطاقة وتشغيل محرك تغيير الأداة يدويًا. بعد الانتهاء من إجراء تغيير الأداة، قم بتحميل الأداة وتفريغها يدويًا، ويكون الإجراء طبيعيًا، ويتم التخلص من مشاكل أداة شد المغزل بشكل مبدئي. عند إجراء عملية تغيير الأداة مرة أخرى، يعلق المعالج ويسقط مخلب المعالج الموجود في مخزن الأداة. بعد العثور على تغيير الأداة، يقوم المعالج بتثبيت الأداة على المغزل ويتم إزاحة الموضع، كما هو موضح في الشكل 2.
بعد إزالة الأداة، تبين أن الإجراء طبيعي. قد يكون سبب هذا الموقف هو الإزاحة بين المناور والمغزل، أو انحراف دقة محور المناور بالنسبة لمحور المغزل، كما أن الوضع غير الدقيق للمغزل سيؤدي أيضًا إلى إزاحة موضع تغيير الأداة . قم بتنفيذ إجراء تغيير الأداة خطوة بخطوة، وتحقق من الموضع الدقيق للمغزل، وقم بإزالة الخطأ الناتج عن الموضع غير الدقيق. وفقًا للجدول، فإن الموضع المحوري الميكانيكي ومسافة مركز الدوران لليد وغطاء السكين والمغزل متسقان، لذلك يتم أيضًا التخلص من خطأ التشويش الميكانيكي للهاتف المحمول الميكانيكي.
في الآونة الأخيرة، تقوم هذه الآلة بشكل أساسي بمعالجة الفولاذ المقاوم للصدأ وقطع عمل المواد الأخرى، مع حجم قطع كبير وحمل ثقيل. يعمل تحت إعادة القطع لفترة طويلة. لقد وجد أن المناور ليس فضفاضًا وأن الحركة التلسكوبية لمخلب المناور مرنة. ومع ذلك، فقد تبين أن كتلة الضبط الموجودة على المعالج مهترئة. تم تفكيكها ولاحظ أن كتلة الضبط تستخدم بشكل أساسي لتثبيت مقبض الأداة. بعد إعادة الإصلاح والمعالجة، حاول مرة أخرى، يختفي الإزاحة في موضع المغزل. السبب الرئيسي لهذا الخطأ هو التأثير الكبير للمناول والتغيير المتكرر للأداة، مما يؤدي إلى ارتخاء وتآكل مخلب التثبيت، كما هو موضح في الشكل 3.
إن متطلبات الوزن الخفيف والسلامة والديكور في صناعة تصنيع السيارات الحديثة تدفع إلى تطوير تكنولوجيا اللحام التقليدية في مجال بلاستيك السيارات. في السنوات الأخيرة، مع تطبيق مجموعة متنوعة من التقنيات المتطورة مثل الموجات فوق الصوتية والاحتكاك الاهتزازي وتكنولوجيا الليزر في مجال تصنيع قطع غيار السيارات البلاستيكية، تم تحسين المستوى الفني والقدرة الداعمة لصناعة تصنيع قطع غيار السيارات المحلية بشكل كبير. أما بالنسبة لعملية اللحام واللحام للأجزاء الداخلية للسيارات، واللحام باللوحة الساخنة، واللحام بالليزر، واللحام بالموجات فوق الصوتية، وآلة اللحام بالموجات فوق الصوتية غير القياسية، وآلة الاحتكاك بالاهتزاز، وما إلى ذلك. تم تطويرها. في هذه العملية، يمكن تحقيق لحام الهيكل الشامل أو المعقد لمرة واحدة، ويمكن تحقيق متطلبات التصميم المثالية على أساس تبسيط تصميم القالب وتقليل تكلفة القولبة. بالنسبة لأجزاء القطع الداخلية والخارجية النموذجية، مكونات كبيرة ذات جودة سطحية عالية والهيكل المعقد، مثل لوحة العدادات، ولوحة الباب، والعمود، وصندوق القفازات، ومشعب سحب المحرك، والمصد الأمامي والخلفي، يجب تحديد تكنولوجيا اللحام المقابلة، واعتماد عملية اللحام المناسبة وفقًا لمتطلبات الهيكل الداخلي والأداء والمواد والإنتاج يكلف. كل هذه التطبيقات لا يمكنها إكمال عملية التصنيع المقابلة فحسب، بل يمكنها أيضًا ضمان الجودة الممتازة والشكل المثالي للمنتجات.
آلة لحام اللوحة الساخنة: يمكن لمعدات آلة لحام اللوحة الساخنة التحكم في الحركة الأفقية أو الرأسية لقالب لحام اللوحة الساخنة، ويتم تشغيل نظام النقل بواسطة محرك هوائي أو هيدروليكي أو محرك مؤازر. تتمثل مزايا تقنية اللحام بلوحة ساخنة في إمكانية تطبيقها على قطع العمل ذات الأحجام المختلفة دون تحديد المساحة، ويمكن تطبيقها على أي سطح لحام، مما يسمح بتعويض بدل البلاستيك، وضمان قوة اللحام، وضبط إجراءات اللحام وفقًا لاحتياجات المواد المختلفة (مثل مثل ضبط درجة حرارة اللحام، ووقت اللحام، ووقت التبريد، وضغط الهواء المدخل، ودرجة حرارة اللحام ووقت التبديل، وما إلى ذلك)، في عملية اللحام، يمكن للمعدات الحفاظ على استقرار جيد، وضمان تأثير اللحام المتسق ودقة ارتفاع قطعة العمل بعد التشغيل الآلي.
ميزة أخرى لآلة لحام اللوحة الساخنة الأفقية هي أنها يمكن أن تدور بمعدل 90 درجة للتنظيف. يمكن تقسيم فترة المعالجة لآلة لحام اللوحة الساخنة عمومًا إلى: الموضع الأصلي (لا تتحرك اللوحة الساخنة مع القوالب العلوية والسفلية)، وفترة التسخين (تتحرك اللوحة الساخنة بين القوالب العلوية والسفلية، وحرارة القالب تتحرك اللوحة الساخنة إلى أسفل القوالب العلوية والسفلية لإذابة أسطح اللحام لقطع العمل العلوية والسفلية)، وفترة النقل (يعود القالب العلوي والسفلي إلى الموضع الأصلي، وتخرج اللوحة الساخنة)، وفترة اللحام والتبريد (الجزء العلوي ويتم ربط القوالب السفلية لجعل قطعة العمل ملحومة في نفس الوقت ومبردة للتشكيل)، والعودة إلى الموضع الأصلي (يتم فصل القوالب العلوية والسفلية، ويمكن إخراج قطعة العمل الملحومة).
في صناعة السيارات المبكرة، كانت معدات اللحام هذه شائعة نسبيًا، ولكن مع التحسين المستمر لمتطلبات الهيكل والشكل وعمر الخدمة للأجزاء نفسها، أصبحت متطلبات معدات المعالجة الخاصة بها أعلى وأعلى. علاوة على ذلك، نظرًا لأن حجم المعدات يقتصر على حجم الأجزاء الملحومة، فيجب تحديد وضع قيادة المعدات والمعدات وفقًا لحجم الأجزاء في التصميم. أهم شيء هو الأجزاء. مساحة التسخين كبيرة وهناك تشوه كبير. بالإضافة إلى ذلك، فإن عملية اللحام تميز قطبية وغير قطبية لحام البلاستيك، مما يؤدي إلى الاستبدال التدريجي للحام اللوحة الساخنة باللحام بالموجات فوق الصوتية واللحام بالليزر. الأجزاء الرئيسية المستخدمة في اللحام في الصين تشمل خزان الوقود البلاستيكي للسيارات، البطارية، المصباح الخلفي، صندوق القفازات، إلخ.
اللحام بالليزر: تستخدم تقنية اللحام بالليزر على نطاق واسع في صناعة تصنيع الأجهزة الطبية اليوم. فقط عدد قليل من الشركات المصنعة في صناعة السيارات تستخدم أنابيب مدخل الهواء باللحام بالليزر، وما إلى ذلك. نظرًا لأنها تقنية لحام جديدة، فهي ليست ناضجة جدًا إلى حد ما، ولكن يُعتقد أنها سيتم استخدامها على نطاق واسع في المستقبل القريب بسبب خصائص اللحام الرائعة التي تتميز بها. ميزتها هي أنها يمكن أن تلحم منتجات TPE / TP أو TPE؛ في حالة عدم وجود اهتزاز، يمكن لحام النايلون وقطعة العمل ذات الأجزاء الإلكترونية الحساسة وسطح اللحام ثلاثي الأبعاد، مما يمكن أن يوفر التكلفة ويقلل من النفايات.
في عملية اللحام، يذوب الراتينج بشكل أقل، ويمكن لحام السطح بإحكام، ولا يوجد وميض أو تجاوز للغراء. يُسمح بلحام الأجزاء البلاستيكية الصلبة دون تجاوز الغراء والاهتزاز. بشكل عام، يمكن لحام قطع العمل ذات أسطح اللحام الناعمة أو غير المنتظمة بالتساوي بغض النظر عن حجم قطع العمل، خاصة بالنسبة للإنتاج على نطاق واسع للأجزاء الدقيقة عالية التقنية. ومع ذلك، فإن توصيل الليزر محدود. تستخدم تقنية اللحام بالليزر "شبه المتزامن" مرآة مسح لنقل شعاع الليزر إلى سطح اللحام بسرعة 10 م / ث وفقًا لشكل اللحام. يمكنها السير على سطح اللحام ما يصل إلى 40 مرة في ثانية واحدة. يذوب البلاستيك المحيط بسطح اللحام ويتم لحام قطعتي العمل بعد الضغط.
يمكن تقسيم اللحام بالليزر تقريبًا إلى: نظام Nd-YAG الصلب (يتم توليد شعاع الليزر بواسطة الكريستال) ونظام الصمام الثنائي (ليزر ديود عالي الطاقة)، وبرمجة بيانات CAD. يمكن لحام جميع المواد بالليزر مع مواد الجسم، ومن بينها أكريلونتريل بوتادين ستايرين الأكثر ملاءمة للحام بالليزر مع مواد أخرى، ولا يمكن لحام النايلون والبولي بروبيلين والبولي إيثيلين إلا بمواد الجسم الخاصة بها، والمواد الأخرى لها قابلية عامة للتطبيق في اللحام بالليزر. fqj
الاتصال: أدا لي
الهاتف:86 17722440307
WhatsApp:86 17722440307
البريد الإلكتروني: Ada@honscn.com
إضافة: 4ف، رقم. 41 طريق هوانغدانغ، لوووي الصناعية، شارع دالانغ، لونغهوا، شنتشن، 518109، الصين