Honscn se centra en servicios profesionales de mecanizado CNC
desde 2003.
El mecanizado de piezas CNC de Honscn Co., Ltd se ha ganado mucho más afecto por parte de los clientes nacionales y extranjeros. Contamos con un equipo de diseño interesado en diseñar tendencias de desarrollo, por lo que nuestro producto está siempre en la frontera de la industria por su atractivo diseño. Tiene una durabilidad superior y una vida útil sorprendentemente larga. También se demuestra que goza de una amplia aplicación.
En años pasados, HONSCN ha obtenido increíbles referencias de boca en boca y promoción en el mercado global, lo que se debe en gran medida al hecho de que ofrecemos una mejor manera de respaldar la productividad y ahorrar costos de producción. El éxito en el mercado de HONSCN se logra y realiza a través de nuestros esfuerzos continuos para brindar a nuestras marcas cooperativas soluciones comerciales óptimas.
En Honscn, las especificaciones y estilos de productos como nuestras piezas de mecanizado CNC exquisitamente fabricadas se pueden personalizar según las necesidades de los clientes. También queremos hacerle saber que las muestras están disponibles para permitirle tener un conocimiento profundo de los productos. Además, se puede discutir la cantidad mínima de pedido.
El procesamiento de piezas de maquinaria de precisión desempeña un papel crucial en diversas industrias, incluidas la aeroespacial, la automotriz, la médica y la manufacturera. Las piezas de maquinaria de precisión tienen requisitos específicos para garantizar un rendimiento óptimo. Un aspecto crucial es el material utilizado para el procesamiento. Si la dureza del material que se procesa supera la de la herramienta del torno, puede causar daños irreparables. Por lo tanto, es fundamental seleccionar materiales que sean compatibles con el mecanizado de precisión.
1 Resistencia y durabilidad del material
Uno de los requisitos clave del procesamiento de piezas de maquinaria de precisión es la resistencia y durabilidad del material. Las piezas de maquinaria a menudo sufren tensiones y presiones significativas durante el funcionamiento, y los materiales seleccionados deben poder soportar estas fuerzas sin deformarse ni romperse. Por ejemplo, los componentes aeroespaciales requieren materiales con altas relaciones resistencia-peso, como aleaciones de titanio, para garantizar la integridad estructural y la confiabilidad.
2 Estabilidad dimensional
Las piezas de maquinaria de precisión deben mantener su estabilidad dimensional incluso en condiciones operativas extremas. Los materiales utilizados en su procesamiento deben poseer coeficientes de expansión térmica bajos, permitiendo que las piezas conserven su forma y tamaño sin deformarse o distorsionarse debido a las fluctuaciones de temperatura. Aceros con baja expansión térmica Los coeficientes, como el acero para herramientas o el acero inoxidable, se prefieren comúnmente para piezas de maquinaria de precisión sujetas a condiciones térmicas variables.
3. Resistencia al desgaste y a la corrosión
Las piezas de maquinaria de precisión a menudo interactúan con otros componentes o entornos que pueden causar desgaste y corrosión. Los materiales elegidos para su procesamiento deben exhibir una excelente resistencia al desgaste para soportar la fricción constante y minimizar el daño a la superficie. Además, la resistencia a la corrosión es crucial para garantizar la longevidad de las piezas. , especialmente en industrias donde la exposición a la humedad, productos químicos o ambientes hostiles es común. Con frecuencia se utilizan materiales como acero endurecido, acero inoxidable o ciertos grados de aleaciones de aluminio para mejorar la resistencia al desgaste y la corrosión.
4.Maquinabilidad
El mecanizado eficiente y preciso es un factor crítico en la fabricación de piezas de maquinaria de precisión. El material seleccionado para el procesamiento debe poseer una buena maquinabilidad, lo que le permitirá cortarlo, perforarlo o darle la forma deseada con facilidad con un desgaste mínimo de la herramienta. Materiales como las aleaciones de aluminio Con excelentes propiedades de maquinabilidad a menudo se prefieren por su versatilidad y facilidad para moldear geometrías complejas.
5.Conductividad térmica
La gestión térmica es importante en el procesamiento de piezas de maquinaria de precisión, ya que el calor excesivo puede afectar negativamente el rendimiento y aumentar el riesgo de fallas. Los materiales con alta conductividad térmica, como las aleaciones de cobre o ciertos grados de aluminio, ayudan a disipar el calor de manera eficiente, evitando el aumento de temperatura localizado y asegurando condiciones óptimas de operación.
6. Rentabilidad
Si bien cumplir con los requisitos específicos es crucial, la rentabilidad también es una consideración importante en el procesamiento de piezas de maquinaria de precisión. Los materiales seleccionados deben lograr un equilibrio entre rendimiento y costo, asegurando que el producto final siga siendo económicamente viable sin comprometer la calidad. El análisis de beneficios y la consideración de factores como la disponibilidad de materiales, la complejidad del procesamiento y el presupuesto general del proyecto pueden ayudar a tomar decisiones informadas con respecto a la selección de materiales.
Las piezas de precisión procesadas con acero inoxidable tienen las ventajas de resistencia a la corrosión, larga vida útil y buena estabilidad mecánica y dimensional, y las piezas de precisión de acero inoxidable austenítico se han utilizado ampliamente en medicina, instrumentación y otros campos de maquinaria de precisión.
Las razones por las que el material de acero inoxidable afecta la precisión del mecanizado de las piezas
La resistencia excepcional del acero inoxidable, junto con su impresionante plasticidad y su notable fenómeno de endurecimiento por trabajo, dan como resultado una disparidad significativa en la fuerza de corte en comparación con el acero al carbono. De hecho, la fuerza de corte requerida para el acero inoxidable supera a la del acero al carbono en más de un 25%.
Al mismo tiempo, la conductividad térmica del acero inoxidable es sólo un tercio de la del acero al carbono y la temperatura del proceso de corte es alta, lo que deteriora el proceso de fresado.
La creciente tendencia al endurecimiento por mecanizado observada en materiales de acero inoxidable exige nuestra seria atención. Durante el fresado, el proceso de corte intermitente provoca impactos y vibraciones excesivos, lo que provoca un desgaste sustancial y el colapso de la fresa. Además, el uso de fresas de mango de diámetro pequeño supone un mayor riesgo de rotura. Significativamente, la disminución de la durabilidad de la herramienta durante el proceso de fresado afecta negativamente a la rugosidad de la superficie y la precisión dimensional de las piezas de precisión mecanizadas a partir de materiales de acero inoxidable, lo que las hace incapaces de cumplir con los estándares requeridos.
Soluciones de precisión para el procesamiento de piezas de precisión de acero inoxidable
En el pasado, las máquinas herramienta tradicionales tenían un éxito limitado en el mecanizado de piezas de acero inoxidable, especialmente cuando se trataba de pequeños componentes de precisión. Esto planteó un gran desafío para los fabricantes. Sin embargo, la aparición de la tecnología de mecanizado CNC ha revolucionado el proceso de mecanizado. Con la ayuda de herramientas avanzadas de revestimiento cerámico y de aleaciones, el mecanizado CNC ha asumido con éxito la compleja tarea de procesar numerosas piezas de precisión de acero inoxidable. Este avance no sólo ha mejorado la precisión del mecanizado de los componentes de acero inoxidable sino que también ha mejorado significativamente la eficiencia del proceso. Como resultado, los fabricantes ahora pueden confiar en el mecanizado CNC para lograr una producción precisa y eficiente de piezas de precisión de acero inoxidable.
Como fabricante líder en la industria del procesamiento de piezas de maquinaria de precisión, HONSCN entiende la importancia de los requisitos materiales para entregar productos excepcionales. Priorizamos el uso de materiales de alta calidad que cumplan con todos los requisitos específicos, garantizando un rendimiento, durabilidad y confiabilidad superiores. Nuestro equipo de profesionales experimentados evalúa meticulosamente las necesidades únicas de cada proyecto, seleccionando los materiales más adecuados para garantizar la satisfacción del cliente y soluciones líderes en la industria.
En conclusión, el procesamiento de piezas de maquinaria de precisión exige una cuidadosa consideración de los materiales utilizados. Desde resistencia y durabilidad hasta resistencia al desgaste y maquinabilidad, cada requisito juega un papel vital para lograr productos de alta calidad. Al comprender y cumplir con estos requisitos de materiales específicos, los fabricantes pueden producir piezas de maquinaria de precisión que sobresalen en rendimiento, confiabilidad y longevidad. Confianza HONSCN para todas sus necesidades de procesamiento de piezas de maquinaria de precisión, ya que nos esforzamos por ofrecer excelencia a través de una selección meticulosa de materiales y una experiencia de fabricación excepcional.
Los materiales están mal, ¡todo en vano! Para producir productos satisfactorios, la elección de los materiales es el paso más básico y el paso más crítico. El mecanizado CNC puede elegir muchos materiales, incluidos materiales metálicos, materiales no metálicos y materiales compuestos.
Los materiales metálicos comunes incluyen acero, aleación de aluminio, aleación de cobre, acero inoxidable, etc. Los materiales no metálicos son plásticos de ingeniería, nailon, baquelita, resina epoxi, etc. Los materiales compuestos son plástico reforzado con fibra, resina epoxi reforzada con fibra de carbono, aluminio reforzado con fibra de vidrio, etc.
Los diferentes materiales tienen diferentes propiedades físicas y mecánicas, y la selección correcta del material adecuado es fundamental para el rendimiento, la precisión y la durabilidad de la pieza. A partir de mi propia experiencia, este artículo compartirá con usted cómo elegir materiales adecuados y de bajo costo entre muchos materiales de procesamiento.
Primero, debemos determinar el uso final del producto y sus partes. Por ejemplo, es necesario desinfectar el equipo médico, calentar las loncheras en el horno de microondas, usar cojinetes, engranajes, etc. para soportar cargas y fricción de rotación múltiple.
Luego de determinar el uso, partiendo de las necesidades reales de aplicación del producto, se investiga el uso del producto, se analizan sus requisitos técnicos y ambientales, y estas necesidades se transforman en las características del material. Por ejemplo, es posible que partes de equipos médicos tengan que soportar el calor extremo de un autoclave; Los rodamientos, engranajes y otros materiales tienen requisitos de resistencia al desgaste, resistencia a la tracción y resistencia a la compresión. Principalmente se puede analizar desde los siguientes puntos:
01 Requisitos ambientales
Analizar el escenario de uso real y el entorno del producto; Por ejemplo: ¿Cuál es la temperatura de trabajo a largo plazo del producto, la temperatura de trabajo más alta/más baja, respectivamente, perteneciente a temperatura alta o baja? ¿Existen requisitos de protección UV en interiores o exteriores? ¿Está en un ambiente seco o húmedo y corrosivo? Etc.
02 Requisitos técnicos
Según los requisitos técnicos del producto, se analizan las capacidades requeridas, que pueden cubrir una variedad de factores relacionados con la aplicación. Por ejemplo: ¿cuál de las capacidades del producto debe ser conductora, aislante o antiestática? ¿Se requiere disipación de calor, conductividad térmica o retardante de llama? ¿Necesita exposición a disolventes químicos? Etc.
03 Requisitos de Rendimiento Físico
Analice las propiedades físicas requeridas de la pieza en función del uso previsto del producto y el entorno en el que se utilizará. Para piezas sometidas a altos esfuerzos o desgaste, factores como la fuerza, la tenacidad y la resistencia al desgaste son críticos; Para piezas expuestas a altas temperaturas durante mucho tiempo, se requiere una buena estabilidad térmica.
04 Requisitos de apariencia y tratamiento superficial.
La aceptación en el mercado del producto depende en gran medida de la apariencia, el color y la transparencia de los diferentes materiales son diferentes, el acabado y el correspondiente tratamiento superficial también son diferentes. Por lo tanto, de acuerdo con los requisitos estéticos del producto, se deben seleccionar los materiales de procesamiento.
05 Consideraciones sobre el rendimiento del procesamiento
Las propiedades de mecanizado del material afectarán el proceso de fabricación y la precisión de la pieza. Por ejemplo, aunque el acero inoxidable es resistente a la oxidación y a la corrosión, su dureza es alta y es fácil desgastar la herramienta durante el procesamiento, lo que genera costos de procesamiento muy altos y no es un buen material para procesar. La dureza del plástico es baja, pero es fácil de ablandar y deformar durante el proceso de calentamiento, y la estabilidad es pobre, lo que debe seleccionarse de acuerdo con las necesidades reales.
Debido a que los requisitos de aplicación reales del producto se componen de varios contenidos, puede haber varios materiales que cumplan con los requisitos de aplicación de un producto; O la situación en la que la selección óptima de diferentes requisitos de aplicación corresponde a diferentes materiales; Podemos terminar con varios materiales que cumplan con nuestros requisitos específicos. Por lo tanto, una vez definidas claramente las propiedades del material deseadas, el paso de selección restante es buscar el material que mejor se adapte a esas propiedades.
La selección de materiales candidatos comienza con una revisión de los datos de las propiedades del material; por supuesto, no es posible investigar miles de materiales aplicados y no es necesario hacerlo. Podemos empezar por la categoría de materiales y primero decidir si necesitamos materiales metálicos, materiales no metálicos o materiales compuestos. Luego, los resultados del análisis previo, correspondientes a las características del material, limitan la selección de materiales candidatos. Finalmente, la información del costo del material se utiliza para seleccionar el material más adecuado para el producto entre varios materiales candidatos.
En la actualidad, Honscn ha seleccionado y lanzado una serie de materiales adecuados para el procesamiento, que han sido una opción popular para nuestros clientes.
Los materiales metálicos se refieren a materiales con propiedades como brillo, ductilidad, fácil conducción y transferencia de calor. Su desempeño se divide principalmente en cuatro aspectos, a saber: propiedades mecánicas, propiedades químicas, propiedades físicas y propiedades de proceso. Estas propiedades determinan el ámbito de aplicación del material y la racionalidad de la aplicación, lo cual es una referencia importante para nosotros a la hora de elegir materiales metálicos. A continuación se presentarán dos tipos de materiales metálicos, aleaciones de aluminio y aleaciones de cobre, que tienen diferentes propiedades mecánicas y características de procesamiento.
Hay más de 1000 grados de aleaciones de aluminio registrados en el mundo, cada marca y significado son diferentes, diferentes grados de aleación de aluminio en dureza, resistencia, procesabilidad, decoración, resistencia a la corrosión, soldabilidad y otras propiedades mecánicas y químicas existen diferencias obvias. , Cada uno tiene sus fortalezas y debilidades.
dureza
La dureza se refiere a su capacidad para resistir rayones o hendiduras. Tiene una relación directa con la composición química de la aleación y los diferentes estados tienen diferentes efectos sobre la dureza del aluminio. La dureza afecta directamente a la velocidad de corte y al tipo de material de herramienta que se puede utilizar en el mecanizado CNC.
De la mayor dureza que se puede conseguir, serie 7 > 2 Serie > 6 Serie > 5 Serie > 3 Serie > 1 serie.
intensidad
La resistencia se refiere a su capacidad para resistir la deformación y la fractura; los indicadores comúnmente utilizados incluyen el límite elástico, la resistencia a la tracción, etc.
Es un factor importante que debe considerarse en el diseño del producto, especialmente cuando se utilizan componentes de aleación de aluminio como piezas estructurales; se debe seleccionar la aleación adecuada de acuerdo con la presión a la que se somete.
Existe una relación positiva entre dureza y resistencia: la resistencia del aluminio puro es la más baja y la resistencia de las aleaciones tratadas térmicamente de las series 2 y 7 es la más alta.
densidad
La densidad se refiere a su masa por unidad de volumen y a menudo se usa para calcular el peso de un material.
La densidad es un factor importante para una variedad de aplicaciones diferentes. Dependiendo de la aplicación, la densidad del aluminio tendrá un impacto significativo en su uso. Por ejemplo, el aluminio liviano y de alta resistencia es ideal para aplicaciones industriales y de construcción.
La densidad del aluminio es de unos 2700 kg/m.³, y el valor de densidad de los diferentes tipos de aleaciones de aluminio no cambia mucho.
Resistencia a la corrosión
La resistencia a la corrosión se refiere a su capacidad para resistir la corrosión cuando está en contacto con otras sustancias. Incluye resistencia a la corrosión química, resistencia a la corrosión electroquímica, resistencia a la corrosión por tensión y otras propiedades.
El principio de selección de la resistencia a la corrosión debe basarse en su ocasión de uso; la aleación de alta resistencia utilizada en un ambiente corrosivo debe usar una variedad de materiales compuestos anticorrosión.
En general, la resistencia a la corrosión del aluminio puro de la serie 1 es la mejor, la serie 5 tiene un buen rendimiento, seguida de las series 3 y 6, y las series 2 y 7 son deficientes.
procesabilidad
La maquinabilidad incluye conformabilidad y maquinabilidad. Debido a que la conformabilidad está relacionada con el estado, después de seleccionar el grado de aleación de aluminio, también es necesario considerar el rango de resistencia de cada estado; generalmente los materiales de alta resistencia no son fáciles de formar.
Si el aluminio se va a doblar, estirar, embutir profundamente y otros procesos de conformado, la conformabilidad del material completamente recocido es la mejor y, por el contrario, la conformabilidad del material tratado térmicamente es la peor.
La maquinabilidad de la aleación de aluminio tiene una gran relación con la composición de la aleación; generalmente la maquinabilidad de una aleación de aluminio de mayor resistencia es mejor; por el contrario, la maquinabilidad de baja resistencia es pobre.
Para moldes, piezas mecánicas y otros productos que deben cortarse, la maquinabilidad de la aleación de aluminio es una consideración importante.
Propiedades de soldadura y flexión.
La mayoría de las aleaciones de aluminio se sueldan sin problemas. En particular, algunas aleaciones de aluminio de la serie 5 están especialmente diseñadas para consideraciones de soldadura; Relativamente hablando, algunas aleaciones de aluminio de las series 2 y 7 son más difíciles de soldar.
Además, la aleación de aluminio de la serie 5 también es la más adecuada para doblar una clase de productos de aleación de aluminio.
Propiedad decorativa
Cuando el aluminio se aplica a la decoración o en algunas ocasiones específicas, es necesario procesar su superficie para obtener el color y la organización superficial correspondientes. Esta situación obliga a centrarnos en las propiedades decorativas de los materiales.
Las opciones de tratamiento de superficies de aluminio incluyen anodizado y pulverización. En general, los materiales con buena resistencia a la corrosión tienen excelentes propiedades de tratamiento superficial.
Otras características
Además de las características anteriores, existen conductividad eléctrica, resistencia al desgaste, resistencia al calor y otras propiedades que debemos considerar más en la selección de materiales.
oricalco
El latón es una aleación de cobre y zinc. Se puede obtener latón con diferentes propiedades mecánicas cambiando el contenido de zinc en el latón. Cuanto mayor sea el contenido de zinc en el latón, mayor será su resistencia y su plasticidad ligeramente menor.
El contenido de zinc del latón utilizado en la industria no supera el 45%, y el contenido de zinc será quebradizo y empeorará el rendimiento de la aleación. Agregar un 1% de estaño al latón puede mejorar significativamente la resistencia del latón al agua de mar y a la corrosión de la atmósfera marina, por lo que se le llama "latón marino".
El estaño puede mejorar la maquinabilidad del latón. El latón con plomo se conoce comúnmente como cobre estándar nacional fácil de cortar. El objetivo principal de agregar plomo es mejorar la maquinabilidad y la resistencia al desgaste, y el plomo tiene poco efecto sobre la resistencia del latón. El cobre tallado es también una especie de latón al plomo.
La mayoría de los latones tienen buen color, procesabilidad, ductilidad y son fáciles de galvanizar o pintar.
cobre rojo
El cobre es cobre puro, también conocido como cobre rojo, tiene buena conductividad eléctrica y térmica, excelente plasticidad, fácil prensado en caliente y procesamiento de presión en frío, se puede convertir en placas, varillas, tubos, alambres, tiras, láminas y otros tipos de cobre.
Una gran cantidad de productos que requieren buena conductividad eléctrica como cobre electrocorroído y barras conductoras para la fabricación de electroerosión, instrumentos magnéticos e instrumentos que deben ser resistentes a interferencias magnéticas, como brújulas e instrumentos de aviación.
No importa qué tipo de material, un solo modelo básicamente no puede cumplir con todos los requisitos de rendimiento de un producto al mismo tiempo y no es necesario. Debemos establecer la prioridad de diversos desempeños de acuerdo con los requisitos de desempeño del producto, el uso del medio ambiente, el proceso de procesamiento y otros factores, una selección razonable de materiales y un control razonable de los costos bajo la premisa de garantizar el desempeño.
Comienza con el hardware, no termina con el hardware. Honscn se compromete a brindar un servicio integral de cadena industrial de sujetadores/CNC.
Ahora muchas industrias de piezas de precisión utilizarán la producción de mecanizado CNC, pero una vez completado el mecanizado CNC, la superficie de muchos productos aún es relativamente rugosa, esta vez es necesario realizar un tratamiento de acabado superficial secundario.
En primer lugar, el tratamiento de superficies no es adecuado para todos los productos de procesamiento CNC, algunos productos se pueden usar directamente después del procesamiento y otros deben pulirse a mano, galvanoplastia, oxidación, tallado con radio, serigrafía, pulverización de polvo y otros procesos especiales. Aquí hay algunas cosas que debe saber sobre el tratamiento de superficies.
1, mejorar la precisión del producto ; Una vez completado el procesamiento del producto, algunos productos tienen una superficie rugosa y dejan una gran tensión residual, lo que reducirá la precisión del producto y afectará la precisión de la coincidencia entre las piezas. En este caso, se requiere el tratamiento superficial del producto.
2, Proporcionar resistencia al desgaste del producto. ; Si las piezas que se utilizan habitualmente interactúan con otras piezas, el uso prolongado aumentará el desgaste de las piezas, lo que también requiere el procesamiento de la superficie del producto para prolongar la vida útil de las piezas.
3, mejorar la resistencia a la corrosión del producto ; Las piezas utilizadas durante mucho tiempo en lugares altamente corrosivos requieren un tratamiento superficial especial, que requiere pulido y pulverización de materiales anticorrosivos. Mejorar la resistencia a la corrosión y la vida útil del producto.
Los tres puntos anteriores son los requisitos previos para el procesamiento de superficies después del procesamiento de piezas de precisión CNC, y a continuación se presentarán varios métodos de tratamiento de superficies.
01. ¿Qué es la galvanoplastia?
La galvanoplastia se refiere a la tecnología de ingeniería de superficies para obtener una película metálica sólida sobre la superficie del sustrato mediante electrólisis en una solución salina que contiene el grupo metalizado, con el grupo metalizado como cátodo y el grupo metalizado u otro conductor inerte como ánodo bajo la superficie. acción de la corriente continua.
02. ¿Por qué electrochapar?
El propósito de la galvanoplastia es mejorar la apariencia del material, al tiempo que le da a la superficie del material una variedad de propiedades físicas y químicas , como resistencia a la corrosión, decorativa, resistencia al desgaste, soldadura fuerte y propiedades eléctricas, magnéticas y ópticas.
03. ¿Cuáles son los tipos y aplicaciones de la galvanoplastia?
1, galvanizado
La capa galvanizada es de alta pureza y es un recubrimiento anódico. La capa de zinc desempeña un papel protector mecánico y electroquímico sobre la matriz de acero.
Por lo tanto, la capa galvanizada se usa ampliamente en maquinaria, hardware, electrónica, instrumentos, industria ligera y otros aspectos, es una de las especies de revestimiento más utilizadas.
2. Recubrimiento de cobre
El revestimiento de cobre es un revestimiento polar catódico que sólo puede desempeñar una función de protección mecánica en el metal base. La capa de revestimiento de cobre generalmente no se usa solo como revestimiento decorativo protector, sino como capa inferior o intermedia del revestimiento para mejorar la adhesión entre el revestimiento de la superficie y el metal base.
En el campo de la electrónica, como el revestimiento de cobre con orificios pasantes en placas de circuito impreso, así como en tecnología de hardware, artesanía, decoración de muebles y otros campos.
3. Niquelado
La capa de niquelado es una capa protectora de polaridad negativa, que solo tiene un efecto de protección mecánica sobre el metal base. Además del uso directo de algunos dispositivos médicos y carcasas de baterías, la capa niquelada se usa a menudo como capa intermedia o inferior, que se usa ampliamente en hardware diario, industria ligera, electrodomésticos, maquinaria y otras industrias.
4. cromado
La capa cromada es un revestimiento de polaridad negativa que sólo desempeña una función de protección mecánica. Cromado decorativo, la capa inferior generalmente es un recubrimiento brillante pulido o electrodepositado.
Ampliamente utilizado en instrumentos, medidores, hardware diario, electrodomésticos, aviones, automóviles, motocicletas, bicicletas y otras piezas expuestas. El cromado funcional incluye cromado duro, cromo poroso, cromo negro, cromo ópalo, etc.
La capa de cromo duro se usa principalmente para varios calibres de medición, calibres, herramientas de corte y varios tipos de ejes, la capa de cromo de orificio suelto se usa principalmente para fallas del pistón de la cavidad del cilindro; La capa de cromo negro se utiliza para piezas que necesitan una superficie opaca y resistencia al desgaste, como instrumentos de aviación, instrumentos ópticos, equipos fotográficos, etc. El cromo opalescente se utiliza principalmente en diversas herramientas de medición.
5. Estañado
En comparación con el sustrato de acero, el estaño es un recubrimiento polar negativo, mientras que en comparación con el sustrato de cobre, es un recubrimiento anódico. La capa de adelgazamiento se utiliza principalmente como capa protectora de placa delgada en la industria de latas, y la mayor parte de la piel de hierro maleable está hecha de placa de hierro estañada. Otro uso importante de los recubrimientos de estaño es en las industrias electrónica y energética.
6, revestimiento de aleación
En una solución, dos o más iones metálicos se coprecipitan en el cátodo para formar un proceso de recubrimiento fino uniforme llamado revestimiento de aleación.
La galvanoplastia de aleación es superior a la galvanoplastia de un solo metal en densidad de cristal, porosidad, color, dureza, resistencia a la corrosión, resistencia al desgaste, conductividad magnética, resistencia al desgaste y resistencia a altas temperaturas.
Hay más de 240 tipos de aleaciones para galvanoplastia, pero en realidad se utilizan menos de 40 tipos en la producción. Generalmente se divide en tres categorías.: revestimiento protector de aleación, revestimiento decorativo de aleación y revestimiento funcional de aleación .
Ampliamente utilizado en aviación, aeroespacial, navegación, automóvil, minería, militar, instrumentos, medidores, hardware visual, vajillas, instrumentos musicales y otras industrias.
Además de lo anterior, existen otros revestimientos químicos, revestimientos compuestos, revestimientos no metálicos, revestimientos de oro, revestimientos de plata, etc.
La superficie de los artículos procesados mediante mecanizado CNC o impresión 3D es a veces rugosa y los requisitos de superficie de los productos son altos, por lo que es necesario pulirlos.
El pulido se refiere al uso de acciones mecánicas, químicas o electroquímicas para reducir la rugosidad de la superficie de la pieza de trabajo con el fin de obtener un método de procesamiento de superficie plana y brillante.
El pulido no puede mejorar la precisión dimensional o geométrica de la pieza de trabajo, sino con el fin de obtener una superficie lisa o brillo de espejo y, a veces, para eliminar el brillo (extinción).
A continuación se describen varios métodos de pulido comunes.:
01. Pulido mecanico
El pulido mecánico se realiza mediante corte, deformación plástica de la superficie del material para eliminar el método de pulido de superficie pulida convexa y lisa, el uso general de tiras de piedra de afilar, ruedas de lana, papel de lija, etc. operación principalmente manual , los requisitos de calidad de la superficie se pueden utilizar para el método de pulido superfino.
El pulido de súper acabado es el uso de herramientas abrasivas especiales, en el líquido de pulido que contiene abrasivo, presionado firmemente sobre la superficie de la pieza a mecanizar, para una rotación de alta velocidad. Este método se utiliza a menudo en moldes de lentes ópticas.
02. Pulido químico
El pulido químico consiste en disolver la parte microscópica que sobresale de la superficie del material en el medio químico preferentemente que la parte cóncava, para obtener una superficie lisa.
La principal ventaja de este método es que no requiere equipos complejos, puede pulir la pieza de trabajo con formas complejas y puede pulir muchas piezas de trabajo al mismo tiempo, con alta eficiencia.
El problema central del pulido químico es la preparación del líquido de pulido.
03. Pulido electrolítico
El principio básico del pulido electrolítico es el mismo que el del pulido químico, es decir, la superficie queda lisa disolviendo selectivamente pequeñas partes que sobresalen de la superficie del material.
En comparación con el pulido químico, el efecto de la reacción catódica se puede eliminar y el efecto es mejor.
04. Pulido ultrasónico
La pieza de trabajo se coloca en la suspensión abrasiva y se coloca en el campo ultrasónico, y el abrasivo se muele y se pule en la superficie de la pieza de trabajo confiando en la oscilación de la onda ultrasónica.
La fuerza macroscópica del procesamiento ultrasónico es pequeña, no causará deformación de la pieza de trabajo, pero la producción e instalación de herramientas es más difícil.
05. Pulido fluido
El pulido fluido se basa en el flujo de líquido a alta velocidad y las partículas abrasivas que transporta para lavar la superficie de la pieza de trabajo y lograr el propósito del pulido.
Los métodos comunes son: procesamiento por chorro abrasivo, procesamiento por chorro líquido, molienda hidrodinámica Y así sucesivamente. El rectificado hidrodinámico es impulsado por presión hidráulica para hacer que el medio líquido que transporta partículas abrasivas fluya a través de la superficie de la pieza de trabajo a alta velocidad.
El medio está hecho principalmente de compuestos especiales con buen flujo a baja presión y mezclados con abrasivos, que pueden ser polvo de carburo de silicio.
06. Pulido magnético
El esmerilado y pulido magnético es el uso de abrasivo magnético bajo la acción de un campo magnético para formar un cepillo abrasivo y pulir la pieza de trabajo.
Este método tiene las ventajas de una alta eficiencia de procesamiento, buena calidad, fácil control de las condiciones de procesamiento y buenas condiciones de trabajo.
Los anteriores son 6 procesos de pulido comunes.
HONSCN Precision ha sido un fabricante profesional de mecanizado CNC durante 20 años. Cooperación con más de 1000 empresas, profunda acumulación de tecnología, equipo de técnicos senior, ¡bienvenido a consultar procesamiento personalizado! Servicio al cliente
El éxito o el fracaso de las operaciones aeroespaciales depende de la exactitud, precisión y calidad de los componentes utilizados. Por este motivo, las empresas aeroespaciales utilizan técnicas y procesos de fabricación avanzados para garantizar que sus componentes satisfagan plenamente sus necesidades. Si bien los nuevos métodos de fabricación, como la impresión 3D, están ganando rápidamente popularidad en la industria, los métodos de fabricación tradicionales, como el mecanizado, siguen desempeñando un papel clave en la producción de piezas y productos para aplicaciones aeroespaciales. Mejores programas CAM, máquinas herramienta para aplicaciones específicas, materiales y recubrimientos mejorados y un mejor control de virutas y amortiguación de vibraciones han cambiado significativamente la forma en que las empresas aeroespaciales fabrican componentes aeroespaciales críticos. Sin embargo, un equipamiento sofisticado por sí solo no es suficiente. Los fabricantes deben tener la experiencia para superar los desafíos del procesamiento de materiales de la industria aeroespacial.
La fabricación de piezas aeroespaciales requiere en primer lugar requisitos de materiales específicos. Estas piezas normalmente requieren alta resistencia, baja densidad, alta estabilidad térmica y resistencia a la corrosión para soportar condiciones operativas extremas.
Los materiales aeroespaciales comunes incluyen:
1. Aleación de aluminio de alta resistencia
Las aleaciones de aluminio de alta resistencia son ideales para piezas estructurales de aviones debido a su peso ligero, resistencia a la corrosión y facilidad de procesamiento. Por ejemplo, la aleación de aluminio 7075 se utiliza ampliamente en la fabricación de piezas aeroespaciales.
2. aleación de titanio
Las aleaciones de titanio tienen una excelente relación resistencia-peso y se utilizan ampliamente en piezas de motores de aviones, componentes de fuselajes y tornillos.
3. superaleación
Las superaleaciones mantienen la resistencia y la estabilidad a altas temperaturas y son adecuadas para boquillas de motores, álabes de turbinas y otras piezas de alta temperatura.
4. Material compuesto
Los compuestos de fibra de carbono funcionan bien para reducir el peso estructural, aumentar la resistencia y reducir la corrosión, y se utilizan comúnmente en la fabricación de carcasas para piezas aeroespaciales y componentes de naves espaciales.
Planificación y diseño de procesos.
Se requiere planificación y diseño del proceso antes del procesamiento. En esta etapa, es necesario determinar el esquema general de procesamiento de acuerdo con los requisitos de diseño de las piezas y las características del material. Esto incluye determinar el proceso de procesamiento, la elección del equipo de la máquina herramienta, la selección de herramientas, etc. Al mismo tiempo, es necesario llevar a cabo un diseño detallado del proceso, incluida la determinación del perfil de corte, la profundidad de corte, la velocidad de corte y otros parámetros.
Proceso de preparación y corte de materiales.
En el proceso de procesamiento de piezas aeroespaciales, lo primero que se necesita es preparar los materiales de trabajo. Por lo general, los materiales utilizados en las piezas de aviación incluyen acero aleado de alta resistencia, acero inoxidable, aleación de aluminio, etc. Una vez completada la preparación del material, se ingresa al proceso de corte.
Este paso implica la selección de máquinas herramienta, como máquinas herramienta CNC, tornos, fresadoras, etc., así como la selección de herramientas de corte. El proceso de corte debe controlar estrictamente la velocidad de avance, la velocidad de corte, la profundidad de corte y otros parámetros de la herramienta para garantizar la precisión dimensional y la calidad de la superficie de las piezas.
Proceso de mecanizado de precisión
Los componentes aeroespaciales suelen ser muy exigentes en cuanto a tamaño y calidad superficial, por lo que el mecanizado de precisión es un paso indispensable. En esta etapa, puede ser necesario utilizar procesos de alta precisión como el rectificado y la electroerosión. El objetivo del proceso de mecanizado de precisión es mejorar aún más la precisión dimensional y el acabado superficial de las piezas, asegurando su fiabilidad y estabilidad en el campo de la aviación.
Tratamiento térmico
Algunas piezas aeroespaciales pueden requerir tratamiento térmico después del mecanizado de precisión. El proceso de tratamiento térmico puede mejorar la dureza, resistencia y resistencia a la corrosión de las piezas. Esto incluye métodos de tratamiento térmico como el temple y el revenido, que se seleccionan según los requisitos específicos de las piezas.
Revestimiento de superficie
Para mejorar la resistencia al desgaste y la resistencia a la corrosión de las piezas de aviación, generalmente se requiere un recubrimiento de superficie. Los materiales de revestimiento pueden incluir carburo cementado, revestimiento cerámico, etc. Los revestimientos de superficies no sólo pueden mejorar el rendimiento de las piezas, sino también prolongar su vida útil.
Montaje y prueba
Realizar montaje e inspección de piezas. En esta etapa, las piezas deben ensamblarse de acuerdo con los requisitos de diseño para garantizar la precisión de la coincidencia entre las distintas piezas. Al mismo tiempo, se requieren pruebas rigurosas, incluidas pruebas dimensionales, pruebas de calidad de la superficie, pruebas de composición de materiales, etc., para garantizar que las piezas cumplan con los estándares de la industria de la aviación.
estricto control de calidad: Los requisitos de control de calidad de las piezas de aviación son muy estrictos y se requieren pruebas y controles estrictos en cada etapa de procesamiento de las piezas de aviación para garantizar que la calidad de las piezas cumpla con los estándares.
Requisitos de alta precisión: Los componentes aeroespaciales normalmente requieren una precisión muy alta, incluida la precisión dimensional, la precisión de la forma y la calidad de la superficie. Por lo tanto, es necesario utilizar máquinas herramienta y herramientas de alta precisión en el proceso de procesamiento para garantizar que las piezas cumplan con los requisitos de diseño.
Diseño de estructura compleja: Las piezas de aviación suelen tener estructuras complejas y es necesario utilizar máquinas herramienta CNC de múltiples ejes y otros equipos para satisfacer las necesidades de procesamiento de estructuras complejas.
Resistencia a altas temperaturas y alta resistencia.: Las piezas de aviación suelen funcionar en entornos hostiles como alta temperatura y alta presión, por lo que es necesario elegir materiales resistentes a altas temperaturas y alta resistencia, y realizar el correspondiente proceso de tratamiento térmico.
En general, el procesamiento de piezas aeroespaciales es un proceso que requiere mucha tecnología y precisión y requiere procesos operativos estrictos y equipos de procesamiento avanzados para garantizar que la calidad y el rendimiento de las piezas finales puedan cumplir con los estrictos requisitos del sector de la aviación.
El procesamiento de piezas aeroespaciales es un desafío, principalmente en las siguientes áreas:
Geometría compleja
Las piezas aeroespaciales suelen tener geometrías complejas que requieren un mecanizado de alta precisión para cumplir con los requisitos de diseño.
Procesamiento de superaleaciones
El procesamiento de superaleaciones es difícil y requiere herramientas y procesos especiales para manipular estos materiales duros.
Piezas grandes
Las piezas de la nave espacial suelen ser muy grandes y requieren grandes máquinas herramienta CNC y equipos de procesamiento especiales.
Control de calidad
La industria aeroespacial es extremadamente exigente con la calidad de las piezas y requiere inspecciones y controles de calidad rigurosos para garantizar que cada pieza cumpla con los estándares.
En el procesamiento de piezas aeroespaciales, la precisión y la confiabilidad son clave. Un conocimiento profundo y un control preciso de los materiales, los procesos, la precisión y las dificultades del mecanizado es la clave para fabricar piezas aeroespaciales de alta calidad.
1 Cambio de herramienta del cargador tipo sombrero. Generalmente se adopta el modo de cambio de herramienta de dirección fija y el número de herramienta es fijo correspondiente al número de asiento de la herramienta. La acción de cambio de herramienta se realiza mediante el movimiento lateral del almacén de herramientas y el movimiento hacia arriba y hacia abajo del husillo, lo que se denomina abreviadamente modo de cambio de herramienta del husillo. Debido a que no tiene manipulador de cambio de herramienta, la acción de selección de herramienta no se puede preseleccionar antes de la acción de cambio de herramienta. La instrucción de cambio de herramienta y la instrucción de selección de herramienta generalmente se escriben en el mismo segmento de programa y el formato de instrucción es el siguiente:M06 T
Cuando se ejecuta el comando, el almacén de herramientas primero gira el portaherramientas correspondiente al número de herramienta en el husillo a la posición de cambio de herramienta y cambia la herramienta en el husillo nuevamente al portaherramientas, y luego el almacén de herramientas gira la herramienta especificada. en el comando a la posición de cambio de herramienta y cambia el husillo. Para este almacén de herramientas, incluso si TX x se ejecuta antes de M06, la herramienta no se puede preseleccionar, * la acción de selección final de herramienta aún se ejecuta cuando se ejecuta M06. Si no hay ningún TX X delante de M06, el sistema dará una alarma.2 Cambio de herramienta del cargador de discos y cadena
La mayoría de ellos utilizan el modo de cambio de herramienta de dirección aleatoria. La relación correspondiente entre el número de herramienta y el número de asiento de herramienta es aleatoria, pero el sistema NC puede recordar su relación correspondiente. El cambio de herramienta de este almacén de herramientas depende del manipulador. La acción del comando y cambio de herramienta es: el comando de herramienta TX controla la rotación del cargador de herramientas y gira la herramienta seleccionada a la posición de trabajo de cambio de herramienta, mientras que el comando de cambio de herramienta M06 controla la acción del manipulador de cambio de herramienta para realizar el Intercambio de herramientas entre la herramienta del husillo y la posición de cambio de herramienta del almacén de herramientas. El comando de selección de herramienta y el comando de cambio de herramienta pueden estar en el mismo segmento de programa o escribirse por separado. Las acciones correspondientes a la selección de herramienta y al comando de cambio de herramienta también se pueden operar de forma simultánea o por separado. El formato de instrucción es el siguiente.:
Tx x M06; Cuando se ejecuta el comando, el almacén de herramientas primero gira la herramienta TX a la posición de cambio de herramienta y luego el manipulador intercambia la herramienta del almacén de herramientas con la herramienta del husillo para realizar el propósito de cambiar la herramienta TX. al husillo. Después de leer los dos métodos anteriores, se puede ver que el método 2 superpone la acción de selección de herramienta con la acción de mecanizado, de modo que al cambiar la herramienta, no es necesario seleccionar la herramienta y cambiar la herramienta directamente, lo que mejora la eficiencia del trabajo.
Como se mencionó anteriormente, el comando de cambio de herramienta del almacén de herramientas está relacionado con el fabricante de la máquina herramienta. Por ejemplo, algunos almacenes de herramientas requieren que no solo el eje Z deba regresar al punto de cambio de herramienta, sino que también el eje Y deba regresar al punto de cambio de herramienta. El formato del programa es el siguiente.:
Al escribir las instrucciones de selección y cambio de herramientas en la misma sección del programa, las reglas de ejecución de herramientas de diferentes fabricantes también pueden ser diferentes. En su caso, independientemente del orden de redacción, se seguirán las reglas de selección y cambio de herramienta. Algunas reglas estipulan que el comando de selección de herramienta debe escribirse antes de ejecutar el comando de cambio de herramienta. De lo contrario, la acción es cambiar la herramienta primero y luego seleccionarla, como se muestra en el programa anterior. En este caso, si el comando de selección de herramienta no se escribe antes de ejecutar el comando M06, el sistema dará una alarma.
Contacto: Ada Li
Tel:86 17722440307
WhatsApp:86 17722440307
Correo electrónico: Ada@honscn.com
Agregar: 4F, No. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China