Honscn tập trung vào Dịch vụ Gia công CNC chuyên nghiệp
kể từ năm 2003.
gia công linh kiện cnc từ Honscn Co.,Ltd đã nhận được nhiều sự yêu mến của khách hàng trong và ngoài nước. Chúng tôi có một đội ngũ thiết kế quan tâm để phát triển thiết kế xu hướng, do đó sản phẩm của chúng tôi là luôn luôn trên biên giới của ngành công nghiệp cho của nó thiết kế hấp dẫn. Nó có độ bền vượt trội và đáng ngạc nhiên tuổi thọ dài. Nó cũng được chứng minh rằng nó thích một ứng dụng rộng rãi.
Trong những năm qua, HONSCN đã nhận được sự giới thiệu và ủng hộ truyền miệng đáng kinh ngạc từ thị trường toàn cầu, phần lớn là do chúng tôi cung cấp cách tốt hơn để hỗ trợ năng suất và tiết kiệm chi phí sản xuất. Sự thành công trên thị trường của HONSCN đạt được và hiện thực hóa thông qua những nỗ lực không ngừng của chúng tôi nhằm cung cấp cho các thương hiệu hợp tác của chúng tôi các giải pháp kinh doanh tối ưu.
Tại Honscn, các thông số kỹ thuật và kiểu dáng của các sản phẩm như các bộ phận cnc gia công tinh xảo của chúng tôi có thể được tùy chỉnh theo nhu cầu của khách hàng. Chúng tôi cũng muốn để cho bạn biết rằng Các mẫu có sẵn để cho phép bạn để có một sự hiểu biết sâu sắc của các sản phẩm. Ngoài ra, số lượng đặt hàng tối thiểu có thể được thảo luận.
Gia công các bộ phận máy móc chính xác đóng một vai trò quan trọng trong các ngành công nghiệp khác nhau, bao gồm hàng không vũ trụ, ô tô, y tế và sản xuất. Các bộ phận máy móc chính xác có các yêu cầu cụ thể để đảm bảo hiệu suất tối ưu. Một khía cạnh quan trọng là vật liệu được sử dụng để gia công. Nếu độ cứng của vật liệu đang được xử lý vượt quá độ cứng của dụng cụ tiện, nó có thể gây ra những hư hỏng không thể khắc phục được. Vì vậy, điều cần thiết là phải chọn vật liệu tương thích với gia công chính xác.
1 Sức mạnh và độ bền vật liệu
Một trong những yêu cầu chính của quá trình xử lý các bộ phận máy móc chính xác là độ bền và độ bền của vật liệu. Các bộ phận máy móc thường chịu ứng suất và áp suất đáng kể trong quá trình vận hành và các vật liệu được chọn phải có khả năng chịu được các lực này mà không bị biến dạng hoặc gãy. Ví dụ, các bộ phận hàng không vũ trụ cần có vật liệu với tỷ lệ cường độ trên trọng lượng cao, chẳng hạn như hợp kim titan, để đảm bảo tính toàn vẹn và độ tin cậy của cấu trúc.
2 Ổn định kích thước
Các bộ phận máy móc chính xác phải duy trì sự ổn định về kích thước ngay cả trong điều kiện vận hành khắc nghiệt. Vật liệu được sử dụng trong quá trình xử lý phải có hệ số giãn nở nhiệt thấp, cho phép các bộ phận giữ được hình dạng và kích thước mà không bị cong vênh hoặc biến dạng do biến động nhiệt độ. Thép có độ giãn nở nhiệt thấp các hệ số, chẳng hạn như thép công cụ hoặc thép không gỉ, thường được ưu tiên cho các bộ phận máy móc chính xác chịu các điều kiện nhiệt khác nhau.
3. Chống mài mòn và ăn mòn
Các bộ phận máy móc chính xác thường tương tác với các bộ phận hoặc môi trường khác có thể gây mài mòn. Vật liệu được chọn để xử lý chúng phải có khả năng chống mài mòn tuyệt vời để chịu được ma sát liên tục và giảm thiểu hư hỏng bề mặt. Ngoài ra, khả năng chống ăn mòn là rất quan trọng để đảm bảo tuổi thọ của các bộ phận , đặc biệt là trong các ngành thường xuyên tiếp xúc với độ ẩm, hóa chất hoặc môi trường khắc nghiệt. Các vật liệu như thép cứng, thép không gỉ hoặc một số loại hợp kim nhôm thường được sử dụng để tăng cường khả năng chống mài mòn và ăn mòn.
4. Khả năng gia công
Gia công hiệu quả và chính xác là yếu tố quan trọng trong việc sản xuất các bộ phận máy móc chính xác. Vật liệu được chọn để gia công phải có khả năng gia công tốt, cho phép dễ dàng cắt, khoan hoặc tạo hình thành dạng mong muốn với độ mài mòn dụng cụ tối thiểu. Các vật liệu như hợp kim nhôm với các đặc tính gia công tuyệt vời thường được ưa thích vì tính linh hoạt và dễ dàng tạo hình thành các hình học phức tạp.
5. Độ dẫn nhiệt
Quản lý nhiệt rất quan trọng trong quá trình xử lý các bộ phận máy móc chính xác, vì nhiệt quá cao có thể ảnh hưởng xấu đến hiệu suất và tăng nguy cơ hỏng hóc. Vật liệu có tính dẫn nhiệt cao, chẳng hạn như hợp kim đồng hoặc một số loại nhôm nhất định, giúp tản nhiệt hiệu quả, ngăn ngừa sự tăng nhiệt độ cục bộ và đảm bảo điều kiện hoạt động tối ưu.
6. Hiệu quả chi phí
Mặc dù việc đáp ứng các yêu cầu cụ thể là rất quan trọng nhưng hiệu quả về mặt chi phí cũng là một yếu tố quan trọng cần cân nhắc trong quá trình xử lý các bộ phận máy móc chính xác. Vật liệu được chọn phải đạt được sự cân bằng giữa hiệu suất và chi phí, đảm bảo rằng sản phẩm cuối cùng vẫn có hiệu quả kinh tế mà không ảnh hưởng đến chất lượng. Tiến hành tính toán chi phí phân tích lợi ích và xem xét các yếu tố như tính sẵn có của nguyên liệu, độ phức tạp trong xử lý và ngân sách tổng thể của dự án có thể hỗ trợ đưa ra quyết định sáng suốt về lựa chọn nguyên liệu.
Các bộ phận chính xác được xử lý bằng thép không gỉ có ưu điểm là chống ăn mòn, tuổi thọ dài và độ ổn định cơ học và kích thước tốt, và các bộ phận chính xác bằng thép không gỉ austenit đã được sử dụng rộng rãi trong y tế, thiết bị đo đạc và các lĩnh vực máy móc chính xác khác.
Những lý do tại sao vật liệu thép không gỉ ảnh hưởng đến độ chính xác gia công của các bộ phận
Độ bền đặc biệt của thép không gỉ, cùng với độ dẻo ấn tượng và hiện tượng đông cứng đáng chú ý, dẫn đến sự chênh lệch đáng kể về lực cắt khi so sánh với thép cacbon. Trên thực tế, lực cắt cần thiết đối với thép không gỉ vượt quá 25% so với thép cacbon.
Đồng thời, độ dẫn nhiệt của thép không gỉ chỉ bằng 1/3 so với thép cacbon, nhiệt độ quá trình cắt cao khiến quá trình xay xát bị xấu đi.
Xu hướng gia công cứng ngày càng tăng được quan sát thấy ở vật liệu thép không gỉ đòi hỏi sự quan tâm nghiêm túc của chúng tôi. Trong quá trình phay, quá trình cắt không liên tục dẫn đến va đập và rung động quá mức, khiến dao phay bị hao mòn đáng kể. Hơn nữa, việc sử dụng dao phay đầu đường kính nhỏ có nguy cơ bị gãy cao hơn. Đáng kể, độ bền của dụng cụ giảm trong quá trình phay ảnh hưởng xấu đến độ nhám bề mặt và độ chính xác về kích thước của các bộ phận chính xác được gia công từ vật liệu thép không gỉ, khiến chúng không thể đáp ứng các tiêu chuẩn yêu cầu.
Giải pháp chính xác xử lý các bộ phận chính xác bằng thép không gỉ
Trước đây, các máy công cụ truyền thống có thành công hạn chế trong việc gia công các bộ phận bằng thép không gỉ, đặc biệt khi nói đến các bộ phận có độ chính xác nhỏ. Điều này đặt ra thách thức lớn cho các nhà sản xuất. Tuy nhiên, sự xuất hiện của công nghệ gia công CNC đã cách mạng hóa quy trình gia công. Với sự hỗ trợ của các công cụ phủ gốm và hợp kim tiên tiến, gia công CNC đã thực hiện thành công nhiệm vụ phức tạp là xử lý nhiều bộ phận chính xác bằng thép không gỉ. Bước đột phá này không chỉ cải thiện độ chính xác gia công của các bộ phận bằng thép không gỉ mà còn nâng cao đáng kể hiệu quả của quy trình. Do đó, các nhà sản xuất giờ đây có thể dựa vào gia công CNC để đạt được việc sản xuất các bộ phận chính xác bằng thép không gỉ một cách chính xác và hiệu quả.
Là nhà sản xuất hàng đầu trong lĩnh vực gia công linh kiện máy móc chính xác, HONSCN hiểu tầm quan trọng của các yêu cầu vật chất trong việc cung cấp các sản phẩm đặc biệt. Chúng tôi ưu tiên sử dụng vật liệu chất lượng cao đáp ứng mọi yêu cầu cụ thể, đảm bảo hiệu suất, độ bền và độ tin cậy vượt trội. Đội ngũ chuyên gia giàu kinh nghiệm của chúng tôi đánh giá tỉ mỉ các nhu cầu riêng biệt của từng dự án, lựa chọn vật liệu phù hợp nhất để đảm bảo sự hài lòng của khách hàng và các giải pháp hàng đầu trong ngành.
Tóm lại, việc xử lý các bộ phận máy móc chính xác đòi hỏi phải xem xét cẩn thận các vật liệu được sử dụng. Từ sức mạnh và độ bền đến khả năng chống mài mòn và khả năng gia công, mỗi yêu cầu đều đóng một vai trò quan trọng trong việc tạo ra các sản phẩm chất lượng cao. Bằng cách hiểu và đáp ứng các yêu cầu vật liệu cụ thể này, nhà sản xuất có thể sản xuất các bộ phận máy móc chính xác vượt trội về hiệu suất, độ tin cậy và tuổi thọ. Lòng tin HONSCN cho tất cả các nhu cầu xử lý bộ phận máy móc chính xác của bạn, vì chúng tôi cố gắng mang lại sự xuất sắc thông qua việc lựa chọn vật liệu tỉ mỉ và chuyên môn sản xuất đặc biệt.
Tài liệu sai, tất cả đều vô ích! Để cho ra đời những sản phẩm đạt yêu cầu thì việc lựa chọn nguyên liệu là khâu cơ bản nhất và quan trọng nhất. Gia công CNC có thể chọn nhiều vật liệu, bao gồm vật liệu kim loại, vật liệu phi kim loại và vật liệu composite.
Vật liệu kim loại phổ biến bao gồm thép, hợp kim nhôm, hợp kim đồng, thép không gỉ, v.v. Vật liệu phi kim loại là nhựa kỹ thuật, nylon, nhựa Bakelite, nhựa epoxy, v.v. Vật liệu composite là nhựa gia cố bằng sợi, nhựa epoxy gia cố bằng sợi carbon, nhôm gia cố bằng sợi thủy tinh, v.v.
Các vật liệu khác nhau có các tính chất cơ lý khác nhau và việc lựa chọn đúng loại vật liệu phù hợp là rất quan trọng đối với hiệu suất, độ chính xác và độ bền của bộ phận. Xuất phát từ kinh nghiệm của bản thân, bài viết này sẽ chia sẻ với các bạn cách chọn nguyên liệu phù hợp và chi phí thấp trong số nhiều nguyên liệu gia công.
Đầu tiên, chúng ta cần xác định mục đích sử dụng cuối cùng của sản phẩm và các bộ phận của nó. Ví dụ, thiết bị y tế cần được khử trùng, hộp cơm trưa cần được làm nóng trong lò vi sóng, vòng bi, bánh răng, v.v., cần được sử dụng để chịu lực và ma sát quay nhiều lần.
Sau khi xác định mục đích sử dụng, bắt đầu từ nhu cầu ứng dụng thực tế của sản phẩm, việc sử dụng sản phẩm sẽ được điều tra, các yêu cầu kỹ thuật và yêu cầu môi trường của sản phẩm được phân tích và những nhu cầu này được chuyển thành đặc tính của vật liệu. Ví dụ, các bộ phận của thiết bị y tế có thể phải chịu được nhiệt độ cực cao của nồi hấp; Vòng bi, bánh răng và các vật liệu khác có yêu cầu về khả năng chống mài mòn, độ bền kéo và cường độ nén. Chủ yếu có thể được phân tích từ các điểm sau:
01 Yêu cầu về môi trường
Phân tích kịch bản sử dụng thực tế và môi trường của sản phẩm; Ví dụ: Nhiệt độ làm việc lâu dài của sản phẩm là bao nhiêu, nhiệt độ làm việc cao nhất/thấp nhất tương ứng thuộc về nhiệt độ cao hay nhiệt độ thấp? Có yêu cầu chống tia cực tím trong nhà hay ngoài trời không? Đó là môi trường khô ráo hay môi trường ẩm ướt, ăn mòn? Vân vân.
02 Yêu cầu kỹ thuật
Theo yêu cầu kỹ thuật của sản phẩm, các khả năng cần thiết sẽ được phân tích, có thể bao gồm một loạt các yếu tố liên quan đến ứng dụng. Chẳng hạn như: sản phẩm cần có khả năng dẫn điện, cách điện hay chống tĩnh điện? Có cần tản nhiệt, dẫn nhiệt hoặc chống cháy không? Bạn có cần tiếp xúc với dung môi hóa học? Vân vân.
03 Yêu cầu về thể chất
Phân tích các đặc tính vật lý cần thiết của bộ phận dựa trên mục đích sử dụng dự định của sản phẩm và môi trường mà sản phẩm sẽ được sử dụng. Đối với các bộ phận chịu ứng suất hoặc mài mòn cao, các yếu tố như độ bền, độ dẻo dai và khả năng chống mài mòn là rất quan trọng; Đối với các bộ phận tiếp xúc với nhiệt độ cao trong thời gian dài cần có độ ổn định nhiệt tốt.
04 Yêu cầu về hình thức và xử lý bề mặt
Sự chấp nhận của thị trường đối với sản phẩm phụ thuộc phần lớn vào hình thức bên ngoài, màu sắc và độ trong suốt của các vật liệu khác nhau, độ hoàn thiện và cách xử lý bề mặt tương ứng cũng khác nhau. Vì vậy, tùy theo yêu cầu thẩm mỹ của sản phẩm mà nên lựa chọn chất liệu gia công.
05 Cân nhắc về hiệu suất xử lý
Các đặc tính gia công của vật liệu sẽ ảnh hưởng đến quá trình chế tạo và độ chính xác của bộ phận. Ví dụ, mặc dù thép không gỉ có khả năng chống gỉ và chống ăn mòn nhưng độ cứng của nó cao và dễ bị mòn dụng cụ trong quá trình gia công, dẫn đến chi phí gia công rất cao và nó không phải là vật liệu tốt để gia công. Độ cứng của nhựa thấp nhưng dễ bị mềm và biến dạng trong quá trình gia nhiệt, độ ổn định kém, cần lựa chọn theo nhu cầu thực tế.
Vì yêu cầu ứng dụng thực tế của sản phẩm bao gồm một số nội dung nên có thể có nhiều tài liệu đáp ứng yêu cầu ứng dụng của sản phẩm; Hoặc tình huống lựa chọn tối ưu các yêu cầu ứng dụng khác nhau tương ứng với các vật liệu khác nhau; Chúng tôi có thể kết thúc với một số tài liệu đáp ứng các yêu cầu cụ thể của chúng tôi. Vì vậy, khi đã xác định rõ các đặc tính vật liệu mong muốn, bước lựa chọn còn lại là tìm kiếm vật liệu phù hợp nhất với các đặc tính đó.
Việc lựa chọn vật liệu ứng cử viên bắt đầu bằng việc xem xét dữ liệu đặc tính vật liệu, tất nhiên, không thể điều tra hàng nghìn vật liệu ứng dụng và cũng không cần thiết phải làm như vậy. Chúng ta có thể bắt đầu từ danh mục vật liệu và trước tiên hãy quyết định xem chúng ta cần vật liệu kim loại, vật liệu phi kim loại hay vật liệu composite. Sau đó, các kết quả phân tích trước đó tương ứng với đặc tính của vật liệu sẽ thu hẹp việc lựa chọn vật liệu ứng cử viên. Cuối cùng, thông tin chi phí vật liệu được sử dụng để chọn ra vật liệu phù hợp nhất cho sản phẩm từ một số vật liệu dự kiến.
Hiện nay, Honscn đã lựa chọn và cho ra đời một số loại vật liệu phù hợp để gia công và được khách hàng ưa chuộng.
Vật liệu kim loại là vật liệu có các đặc tính như độ bóng, độ dẻo, dễ dẫn nhiệt và truyền nhiệt. Hiệu suất của nó chủ yếu được chia thành bốn khía cạnh, đó là: tính chất cơ học, tính chất hóa học, tính chất vật lý, tính chất quá trình. Các tính chất này xác định phạm vi ứng dụng của vật liệu và tính hợp lý của ứng dụng, đây là tài liệu tham khảo quan trọng để chúng ta lựa chọn vật liệu kim loại. Sau đây sẽ giới thiệu hai loại vật liệu kim loại, hợp kim nhôm và hợp kim đồng, có tính chất cơ học và đặc tính gia công khác nhau.
Có hơn 1000 loại hợp kim nhôm được đăng ký trên thế giới, mỗi tên thương hiệu và ý nghĩa là khác nhau, các loại hợp kim nhôm khác nhau về độ cứng, độ bền, khả năng xử lý, trang trí, chống ăn mòn, khả năng hàn và các tính chất cơ học và tính chất hóa học khác có sự khác biệt rõ ràng , mỗi cái đều có điểm mạnh và điểm yếu.
độ cứng
Độ cứng đề cập đến khả năng chống trầy xước hoặc vết lõm. Nó có mối quan hệ trực tiếp với thành phần hóa học của hợp kim và các trạng thái khác nhau có tác động khác nhau đến độ cứng của nhôm. Độ cứng ảnh hưởng trực tiếp đến tốc độ cắt và loại vật liệu dụng cụ có thể được sử dụng trong gia công CNC.
Từ độ cứng cao nhất có thể đạt được, dòng 7 > 2 Loạt > 6 Loạt > 5 Loạt > 3 Loạt > 1 loạt.
cường độ
Sức mạnh đề cập đến khả năng chống biến dạng và gãy xương, các chỉ số thường được sử dụng bao gồm cường độ năng suất, độ bền kéo, v.v.
Đó là một yếu tố quan trọng phải được xem xét trong thiết kế sản phẩm, đặc biệt khi các thành phần hợp kim nhôm được sử dụng làm bộ phận kết cấu, phải chọn hợp kim phù hợp theo áp suất.
Có một mối quan hệ tích cực giữa độ cứng và độ bền: độ bền của nhôm nguyên chất là thấp nhất và độ bền của hợp kim được xử lý nhiệt dòng 2 và 7 là cao nhất.
Mật độ
Mật độ đề cập đến khối lượng của nó trên một đơn vị thể tích và thường được sử dụng để tính trọng lượng của vật liệu.
Mật độ là một yếu tố quan trọng cho nhiều ứng dụng khác nhau. Tùy thuộc vào ứng dụng, mật độ của nhôm sẽ có tác động đáng kể đến cách sử dụng. Ví dụ, nhôm nhẹ, độ bền cao rất lý tưởng cho các ứng dụng xây dựng và công nghiệp.
Mật độ của nhôm khoảng 2700kg/m³và giá trị mật độ của các loại hợp kim nhôm khác nhau không thay đổi nhiều.
Chống ăn mòn
Khả năng chống ăn mòn đề cập đến khả năng chống ăn mòn khi tiếp xúc với các chất khác. Nó bao gồm khả năng chống ăn mòn hóa học, chống ăn mòn điện hóa, chống ăn mòn ứng suất và các đặc tính khác.
Nguyên tắc lựa chọn khả năng chống ăn mòn phải dựa trên dịp sử dụng, hợp kim có độ bền cao được sử dụng trong môi trường ăn mòn, phải sử dụng nhiều loại vật liệu composite chống ăn mòn.
Nhìn chung, khả năng chống ăn mòn của nhôm nguyên chất dòng 1 là tốt nhất, dòng 5 hoạt động tốt, tiếp theo là dòng 3 và 6, còn dòng 2 và 7 thì kém.
khả năng xử lý
Khả năng gia công bao gồm khả năng định hình và khả năng gia công. Vì khả năng tạo hình liên quan đến trạng thái nên sau khi chọn loại hợp kim nhôm cũng cần xem xét phạm vi cường độ của từng trạng thái, thông thường vật liệu có độ bền cao không dễ hình thành.
Nếu nhôm được uốn cong, kéo, kéo sâu và các quá trình tạo hình khác thì khả năng tạo hình của vật liệu được ủ hoàn toàn là tốt nhất, và ngược lại, khả năng tạo hình của vật liệu được xử lý nhiệt là kém nhất.
Khả năng gia công của hợp kim nhôm có mối quan hệ lớn với thành phần hợp kim, thường khả năng gia công hợp kim nhôm có độ bền cao hơn sẽ tốt hơn, ngược lại, khả năng gia công có độ bền thấp là kém.
Đối với khuôn mẫu, các bộ phận cơ khí và các sản phẩm khác cần cắt, khả năng gia công của hợp kim nhôm là một yếu tố quan trọng cần cân nhắc.
Đặc tính hàn và uốn
Hầu hết các hợp kim nhôm được hàn mà không gặp vấn đề gì. Đặc biệt, một số hợp kim nhôm dòng 5 được thiết kế đặc biệt để hàn; Nói một cách tương đối, một số hợp kim nhôm dòng 2 và 7 khó hàn hơn.
Ngoài ra, hợp kim nhôm 5 series cũng là loại hợp kim thích hợp nhất để uốn các loại sản phẩm hợp kim nhôm.
Tài sản trang trí
Khi nhôm được sử dụng để trang trí hoặc trong một số trường hợp cụ thể, bề mặt của nó cần được xử lý để có được màu sắc và tổ chức bề mặt tương ứng. Tình huống này đòi hỏi chúng ta phải tập trung vào tính chất trang trí của vật liệu.
Các lựa chọn xử lý bề mặt nhôm bao gồm anodizing và phun. Nhìn chung, vật liệu có khả năng chống ăn mòn tốt có đặc tính xử lý bề mặt tuyệt vời.
Các đặc điểm khác
Ngoài những đặc tính trên còn có tính dẫn điện, chống mài mòn, chịu nhiệt và các tính chất khác, chúng ta cần cân nhắc nhiều hơn trong việc lựa chọn vật liệu.
Orichalcum
Đồng thau là hợp kim của đồng và kẽm. Đồng thau có các tính chất cơ học khác nhau có thể thu được bằng cách thay đổi hàm lượng kẽm trong đồng thau. Hàm lượng kẽm trong đồng thau càng cao thì độ bền của nó càng cao và độ dẻo càng thấp.
Hàm lượng kẽm của đồng thau được sử dụng trong công nghiệp không vượt quá 45%, hàm lượng kẽm sẽ giòn và làm cho hiệu suất hợp kim kém hơn. Thêm 1% thiếc vào đồng thau có thể cải thiện đáng kể khả năng chống ăn mòn của đồng thau đối với nước biển và khí quyển biển, vì vậy nó được gọi là "đồng thau hải quân".
Thiếc có thể cải thiện khả năng gia công của đồng thau. Đồng thau chì thường được gọi là đồng tiêu chuẩn quốc gia dễ cắt. Mục đích chính của việc thêm chì là cải thiện khả năng gia công và chống mài mòn, và chì ít ảnh hưởng đến độ bền của đồng thau. Đồng khắc cũng là một loại đồng thau chì.
Hầu hết các loại đồng thau đều có màu sắc tốt, khả năng gia công, độ dẻo và dễ mạ điện hoặc sơn.
Đồng đỏ
Đồng là đồng nguyên chất, còn gọi là đồng đỏ, có tính dẫn điện và nhiệt tốt, độ dẻo tuyệt vời, dễ dàng ép nóng và xử lý áp suất lạnh, có thể chế tạo thành tấm, thanh, ống, dây, dải, lá và các loại đồng khác.
Một số lượng lớn các sản phẩm đòi hỏi tính dẫn điện tốt như đồng bị ăn mòn điện và các thanh dẫn điện để sản xuất EDM, các dụng cụ, dụng cụ từ tính phải có khả năng chống nhiễu từ như la bàn và dụng cụ hàng không.
Bất kể loại vật liệu nào, về cơ bản, một mô hình không thể đáp ứng tất cả các yêu cầu về hiệu suất của một sản phẩm cùng một lúc và điều đó là không cần thiết. Chúng ta nên đặt mức độ ưu tiên của các hiệu suất khác nhau theo yêu cầu hiệu suất của sản phẩm, việc sử dụng môi trường, quy trình xử lý và các yếu tố khác, lựa chọn vật liệu hợp lý và kiểm soát chi phí hợp lý với tiền đề đảm bảo hiệu suất.
Bắt đầu với phần cứng, không dừng lại với phần cứng. Honscn cam kết cung cấp dịch vụ một cửa cho chuỗi công nghiệp dây buộc/CNC.
Hiện nay, nhiều ngành sản xuất bộ phận chính xác sẽ sử dụng sản xuất gia công CNC, nhưng sau khi gia công CNC hoàn thành, nhiều bề mặt sản phẩm vẫn còn tương đối thô, lúc này bạn cần tiến hành xử lý hoàn thiện bề mặt thứ cấp.
Trước hết, xử lý bề mặt không phù hợp với tất cả các sản phẩm gia công CNC, một số sản phẩm có thể được sử dụng trực tiếp sau khi gia công, và một số cần được đánh bóng bằng tay, mạ điện, oxy hóa, khắc radium, in lụa, phun bột và các quy trình đặc biệt khác. Dưới đây là một số điều bạn nên biết về xử lý bề mặt.
1, cải thiện độ chính xác của sản phẩm ; Sau khi quá trình xử lý sản phẩm hoàn tất, một số sản phẩm có bề mặt gồ ghề và để lại ứng suất dư lớn, điều này sẽ làm giảm độ chính xác của sản phẩm và ảnh hưởng đến độ chính xác của sự ăn khớp giữa các bộ phận. Trong trường hợp này, việc xử lý bề mặt sản phẩm là cần thiết.
2, cung cấp khả năng chống mài mòn sản phẩm ; Nếu các bộ phận thường sử dụng trong tình huống tương tác với các bộ phận khác, thì việc sử dụng lâu dài sẽ làm tăng độ mòn của bộ phận, điều này cũng đòi hỏi phải xử lý bề mặt sản phẩm để kéo dài tuổi thọ của các bộ phận.
3, cải thiện khả năng chống ăn mòn của sản phẩm ; Các bộ phận được sử dụng lâu dài ở những nơi có tính ăn mòn cao cần được xử lý bề mặt đặc biệt, cần đánh bóng và phun vật liệu chống ăn mòn. Cải thiện khả năng chống ăn mòn và tuổi thọ của sản phẩm.
Ba điểm trên là điều kiện tiên quyết để xử lý bề mặt sau khi xử lý các bộ phận chính xác bằng CNC và một số phương pháp xử lý bề mặt sẽ được giới thiệu dưới đây.
01. Mạ điện là gì?
Mạ điện đề cập đến công nghệ kỹ thuật bề mặt để thu được màng kim loại rắn trên bề mặt chất nền bằng cách điện phân trong dung dịch muối chứa nhóm kim loại hóa, với nhóm kim loại hóa là cực âm và nhóm kim loại hóa hoặc chất dẫn trơ khác làm cực dương dưới tác dụng của dòng điện một chiều.
02. Tại sao mạ điện?
Mục đích của mạ điện là để cải thiện bề ngoài của vật liệu, đồng thời mang lại cho bề mặt vật liệu nhiều tính chất vật lý và hóa học , chẳng hạn như chống ăn mòn, trang trí, chống mài mòn, hàn và các tính chất điện, từ, quang.
03. Các loại và ứng dụng của mạ điện là gì?
1, mạ kẽm
Lớp mạ kẽm có độ tinh khiết cao và là lớp phủ anốt. Lớp kẽm đóng vai trò bảo vệ cơ học và điện hóa trên nền thép.
Vì vậy, lớp mạ kẽm được sử dụng rộng rãi trong máy móc, phần cứng, điện tử, dụng cụ, công nghiệp nhẹ và các lĩnh vực khác, là một trong những loại mạ được sử dụng rộng rãi nhất.
2. Mạ đồng
Lớp phủ đồng là lớp phủ cực âm, chỉ có thể đóng vai trò bảo vệ cơ học trên kim loại cơ bản. Lớp mạ đồng thường không chỉ được sử dụng làm lớp phủ trang trí bảo vệ mà còn là lớp dưới cùng hoặc lớp giữa của lớp phủ để cải thiện độ bám dính giữa lớp phủ bề mặt và kim loại cơ bản.
Trong lĩnh vực điện tử, chẳng hạn như mạ đồng xuyên lỗ trên bảng mạch in, cũng như công nghệ phần cứng, thủ công, trang trí nội thất và các lĩnh vực khác.
3. mạ niken
Lớp mạ niken là lớp bảo vệ phân cực âm, chỉ có tác dụng bảo vệ cơ học đối với kim loại nền. Ngoài việc sử dụng trực tiếp một số thiết bị y tế và vỏ pin, lớp mạ niken thường được sử dụng làm lớp giữa hoặc lớp dưới, được sử dụng rộng rãi trong phần cứng hàng ngày, công nghiệp nhẹ, thiết bị gia dụng, máy móc và các ngành công nghiệp khác.
4. mạ crom
Lớp mạ crom là lớp phủ phân cực âm, chỉ đóng vai trò bảo vệ cơ học. Mạ crom trang trí, lớp dưới cùng thường được đánh bóng hoặc phủ lớp sơn sáng bằng điện.
Được sử dụng rộng rãi trong các dụng cụ, máy đo, phần cứng hàng ngày, thiết bị gia dụng, máy bay, ô tô, xe máy, xe đạp và các bộ phận tiếp xúc khác. Mạ crom chức năng bao gồm mạ crom cứng, crom xốp, crom đen, crom opal, v.v.
Lớp crom cứng chủ yếu được sử dụng cho các loại thước đo, đồng hồ đo, dụng cụ cắt và các loại trục khác nhau, lớp crom lỗ lỏng chủ yếu được sử dụng cho các hỏng hóc của piston khoang xi lanh; Lớp crom đen được sử dụng cho các bộ phận cần bề mặt xỉn màu và chống mài mòn, chẳng hạn như dụng cụ hàng không, dụng cụ quang học, thiết bị chụp ảnh, v.v. Crom trắng đục chủ yếu được sử dụng trong các dụng cụ đo lường khác nhau.
5. mạ thiếc
So với nền thép, thiếc là lớp phủ cực âm, trong khi so với nền đồng, nó là lớp phủ cực dương. Lớp mỏng chủ yếu được sử dụng làm lớp bảo vệ tấm mỏng trong ngành công nghiệp đóng hộp, và hầu hết lớp da sắt dẻo được làm bằng tấm sắt mỏng. Một ứng dụng chính khác của lớp phủ thiếc là trong ngành công nghiệp điện tử và điện.
6, mạ hợp kim
Trong một dung dịch, hai hoặc nhiều ion kim loại được kết tủa trên cực âm để tạo thành một quá trình phủ mịn đồng nhất gọi là mạ hợp kim.
Mạ điện hợp kim vượt trội hơn so với mạ điện kim loại đơn lẻ về mật độ tinh thể, độ xốp, màu sắc, độ cứng, khả năng chống ăn mòn, chống mài mòn, dẫn từ, chống mài mòn và chịu nhiệt độ cao.
Có hơn 240 loại hợp kim mạ điện, nhưng chỉ có ít hơn 40 loại được sử dụng thực sự trong sản xuất. Nó thường được chia thành ba loại: lớp phủ hợp kim bảo vệ, lớp phủ hợp kim trang trí và lớp phủ hợp kim chức năng .
Được sử dụng rộng rãi trong hàng không, hàng không vũ trụ, điều hướng, ô tô, khai thác mỏ, quân sự, dụng cụ, máy đo, phần cứng trực quan, bộ đồ ăn, Nhạc cụ và các ngành công nghiệp khác.
Ngoài các loại trên, còn có các loại mạ hóa học khác, mạ composite, mạ phi kim loại, mạ vàng, mạ bạc, v.v.
Bề mặt của các sản phẩm được gia công bằng máy CNC hoặc in 3D đôi khi thô ráp và yêu cầu bề mặt của sản phẩm cao nên cần được đánh bóng.
Đánh bóng đề cập đến việc sử dụng tác động cơ học, hóa học hoặc điện hóa để giảm độ nhám bề mặt của phôi để có được phương pháp xử lý bề mặt phẳng, sáng.
Đánh bóng không thể cải thiện độ chính xác về kích thước hoặc độ chính xác hình học của phôi mà nhằm mục đích đạt được bề mặt nhẵn hoặc độ bóng như gương, và đôi khi để loại bỏ độ bóng (tuyệt chủng).
Một số phương pháp đánh bóng phổ biến được mô tả dưới đây:
01. Đánh bóng cơ khí
Đánh bóng cơ học là bằng cách cắt, biến dạng dẻo của bề mặt vật liệu để loại bỏ phương pháp đánh bóng bề mặt lồi và mịn, sử dụng chung dải đá mài, bánh xe len, giấy nhám, v.v. chủ yếu vận hành thủ công , yêu cầu chất lượng bề mặt có thể được sử dụng để đánh bóng siêu mịn phương pháp.
Đánh bóng siêu hoàn thiện là việc sử dụng các dụng cụ mài đặc biệt, trong chất lỏng đánh bóng có chứa chất mài mòn, ép chặt lên bề mặt phôi cần gia công, cho tốc độ quay cao. Phương pháp này thường được sử dụng trong khuôn thấu kính quang học.
02. Đánh bóng hóa học
Đánh bóng hóa học là hòa tan phần nhô ra cực nhỏ của bề mặt vật liệu trong môi trường hóa học tốt hơn phần lõm để có được bề mặt nhẵn.
Ưu điểm chính của phương pháp này là không yêu cầu thiết bị phức tạp, có thể đánh bóng phôi có hình dạng phức tạp và có thể đánh bóng nhiều phôi cùng lúc, đạt hiệu quả cao.
Vấn đề cốt lõi của đánh bóng hóa học là chuẩn bị chất lỏng đánh bóng.
03. Đánh bóng điện phân
Nguyên lý cơ bản của đánh bóng điện phân cũng giống như đánh bóng hóa học, đó là bề mặt được làm mịn bằng cách hòa tan có chọn lọc các phần nhô ra nhỏ trên bề mặt vật liệu.
So với đánh bóng hóa học, hiệu ứng của phản ứng catốt có thể được loại bỏ và hiệu quả tốt hơn.
04. Đánh bóng siêu âm
Phôi được đưa vào hệ thống treo mài mòn và đặt cùng nhau trong trường siêu âm, mài mòn và đánh bóng trên bề mặt phôi bằng cách dựa vào sự dao động của sóng siêu âm.
Lực vĩ mô xử lý siêu âm nhỏ, sẽ không gây biến dạng phôi, nhưng việc sản xuất và lắp đặt dụng cụ khó khăn hơn.
05. Đánh bóng chất lỏng
Đánh bóng bằng chất lỏng dựa vào chất lỏng chảy tốc độ cao và các hạt mài mòn mà nó mang theo để rửa bề mặt phôi nhằm đạt được mục đích đánh bóng.
Các phương pháp phổ biến là: xử lý phản lực mài mòn, xử lý phản lực chất lỏng, mài thủy động Và như vậy. Quá trình mài thủy động được điều khiển bởi áp suất thủy lực để làm cho môi trường lỏng mang các hạt mài mòn chảy qua bề mặt phôi ở tốc độ cao.
Môi trường chủ yếu được làm từ các hợp chất đặc biệt có dòng chảy tốt dưới áp suất thấp và trộn với chất mài mòn, có thể là bột cacbua silic.
06. Đánh bóng mài từ tính
Mài và đánh bóng từ tính là việc sử dụng chất mài mòn từ tính dưới tác dụng của từ trường để tạo thành bàn chải mài mòn, mài phôi.
Phương pháp này có ưu điểm là hiệu quả xử lý cao, chất lượng tốt, dễ dàng kiểm soát điều kiện xử lý và điều kiện làm việc tốt.
Trên đây là 6 quy trình đánh bóng thông dụng.
HONSCN Precision đã là nhà sản xuất gia công CNC chuyên nghiệp trong 20 năm. Hợp tác với hơn 1.000 doanh nghiệp, tích lũy công nghệ sâu, đội ngũ kỹ thuật viên cao cấp, hoan nghênh tư vấn xử lý tùy chỉnh! Dịch vụ khách hàng
Sự thành công hay thất bại của các hoạt động hàng không vũ trụ phụ thuộc vào độ chính xác, chính xác và chất lượng của các bộ phận được sử dụng. Vì lý do này, các công ty hàng không vũ trụ sử dụng các kỹ thuật và quy trình sản xuất tiên tiến để đảm bảo rằng các bộ phận của họ đáp ứng đầy đủ nhu cầu của họ. Trong khi các phương pháp sản xuất mới như in 3D đang nhanh chóng trở nên phổ biến trong ngành thì các phương pháp sản xuất truyền thống như gia công tiếp tục đóng vai trò quan trọng trong việc sản xuất các bộ phận và sản phẩm cho các ứng dụng hàng không vũ trụ. Chẳng hạn như các chương trình CAM tốt hơn, các công cụ máy dành riêng cho ứng dụng, vật liệu và lớp phủ nâng cao cũng như khả năng kiểm soát chip và giảm rung được cải tiến - đã thay đổi đáng kể cách các công ty hàng không vũ trụ sản xuất các bộ phận quan trọng của hàng không vũ trụ. Tuy nhiên, chỉ trang bị hiện đại thôi là chưa đủ. Các nhà sản xuất phải có chuyên môn để vượt qua những thách thức xử lý vật liệu của ngành hàng không vũ trụ.
Việc sản xuất các bộ phận hàng không vũ trụ trước tiên đòi hỏi những yêu cầu vật liệu cụ thể. Những bộ phận này thường yêu cầu độ bền cao, mật độ thấp, độ ổn định nhiệt cao và khả năng chống ăn mòn để xử lý các điều kiện vận hành khắc nghiệt.
Các vật liệu hàng không vũ trụ phổ biến bao gồm:
1. Hợp kim nhôm cường độ cao
Hợp kim nhôm có độ bền cao lý tưởng cho các bộ phận kết cấu máy bay vì trọng lượng nhẹ, khả năng chống ăn mòn và dễ gia công. Ví dụ, hợp kim nhôm 7075 được sử dụng rộng rãi trong sản xuất các bộ phận hàng không vũ trụ.
2. hợp kim titan
Hợp kim titan có tỷ lệ độ bền và trọng lượng tuyệt vời và được sử dụng rộng rãi trong các bộ phận động cơ máy bay, các bộ phận thân máy bay và ốc vít.
3. siêu hợp kim
Siêu hợp kim duy trì độ bền và độ ổn định ở nhiệt độ cao và thích hợp cho vòi phun động cơ, cánh tuabin và các bộ phận nhiệt độ cao khác.
4. Vật liệu tổng hợp
Vật liệu tổng hợp sợi carbon hoạt động tốt trong việc giảm trọng lượng kết cấu, tăng độ bền và giảm ăn mòn và thường được sử dụng trong sản xuất vỏ cho các bộ phận hàng không vũ trụ và các thành phần tàu vũ trụ.
Lập kế hoạch và thiết kế quy trình
Lập kế hoạch và thiết kế quy trình là cần thiết trước khi xử lý. Ở giai đoạn này, cần xác định sơ đồ xử lý tổng thể theo yêu cầu thiết kế của các bộ phận và đặc tính vật liệu. Điều này bao gồm việc xác định quá trình xử lý, lựa chọn thiết bị máy công cụ, lựa chọn công cụ, v.v. Đồng thời, cần thực hiện thiết kế quy trình chi tiết, bao gồm việc xác định biên dạng cắt, độ sâu cắt, tốc độ cắt và các thông số khác.
Quá trình chuẩn bị và cắt nguyên liệu
Trong quá trình xử lý các bộ phận hàng không vũ trụ, việc đầu tiên cần chuẩn bị nguyên liệu làm việc. Thông thường, vật liệu được sử dụng trong các bộ phận hàng không bao gồm thép hợp kim cường độ cao, thép không gỉ, hợp kim nhôm, v.v. Sau khi chuẩn bị nguyên liệu xong thì bắt đầu quá trình cắt.
Bước này liên quan đến việc lựa chọn các máy công cụ, chẳng hạn như máy công cụ CNC, máy tiện, máy phay, v.v., cũng như việc lựa chọn các công cụ cắt. Quá trình cắt cần kiểm soát chặt chẽ tốc độ cấp liệu, tốc độ cắt, độ sâu cắt và các thông số khác của dụng cụ để đảm bảo độ chính xác về kích thước và chất lượng bề mặt của các bộ phận.
Quá trình gia công chính xác
Các linh kiện hàng không vũ trụ thường có yêu cầu rất cao về kích thước cũng như chất lượng bề mặt nên việc gia công chính xác là khâu không thể thiếu. Ở giai đoạn này, có thể cần phải sử dụng các quy trình có độ chính xác cao như mài và EDM. Mục tiêu của quy trình gia công chính xác là cải thiện hơn nữa độ chính xác về kích thước và độ hoàn thiện bề mặt của các bộ phận, đảm bảo độ tin cậy và ổn định của chúng trong lĩnh vực hàng không.
Xử lý nhiệt
Một số bộ phận hàng không vũ trụ có thể yêu cầu xử lý nhiệt sau khi gia công chính xác. Quá trình xử lý nhiệt có thể cải thiện độ cứng, độ bền và khả năng chống ăn mòn của các bộ phận. Điều này bao gồm các phương pháp xử lý nhiệt như làm nguội và ủ, được lựa chọn theo yêu cầu cụ thể của các bộ phận.
Lớp phủ bề mặt
Để cải thiện khả năng chống mài mòn và chống ăn mòn của các bộ phận hàng không, thường cần có lớp phủ bề mặt. Vật liệu phủ có thể bao gồm cacbua xi măng, lớp phủ gốm, v.v. Lớp phủ bề mặt không chỉ có thể cải thiện hiệu suất của các bộ phận mà còn kéo dài tuổi thọ của chúng.
Lắp ráp và thử nghiệm
Thực hiện lắp ráp và kiểm tra các bộ phận. Ở giai đoạn này, các bộ phận cần được lắp ráp theo đúng yêu cầu thiết kế để đảm bảo độ chính xác khớp giữa các bộ phận khác nhau. Đồng thời, cần phải kiểm tra nghiêm ngặt, bao gồm kiểm tra kích thước, kiểm tra chất lượng bề mặt, kiểm tra thành phần vật liệu, v.v. để đảm bảo các bộ phận đáp ứng tiêu chuẩn ngành hàng không.
Kiểm soát chất lượng nghiêm ngặt: Yêu cầu kiểm soát chất lượng của các bộ phận hàng không rất nghiêm ngặt, cần phải kiểm tra và kiểm soát nghiêm ngặt ở từng giai đoạn xử lý các bộ phận hàng không để đảm bảo chất lượng của các bộ phận đáp ứng tiêu chuẩn.
Yêu cầu độ chính xác cao: Các thành phần hàng không vũ trụ thường yêu cầu độ chính xác rất cao, bao gồm độ chính xác về kích thước, độ chính xác về hình dạng và chất lượng bề mặt. Vì vậy, trong quá trình gia công cần sử dụng các máy công cụ và máy công cụ có độ chính xác cao để đảm bảo các bộ phận đáp ứng yêu cầu thiết kế.
Thiết kế kết cấu phức tạp: Các bộ phận hàng không thường có cấu trúc phức tạp và cần sử dụng máy công cụ CNC đa trục và các thiết bị khác để đáp ứng nhu cầu xử lý các cấu trúc phức tạp.
Chịu nhiệt độ cao và độ bền cao: Các bộ phận hàng không thường làm việc trong môi trường khắc nghiệt như nhiệt độ cao và áp suất cao, do đó cần phải chọn vật liệu có khả năng chịu nhiệt độ cao, độ bền cao và thực hiện quy trình xử lý nhiệt tương ứng.
Nhìn chung, xử lý các bộ phận hàng không vũ trụ là một quy trình đòi hỏi độ chính xác, cường độ công nghệ cao, đòi hỏi quy trình vận hành nghiêm ngặt và thiết bị xử lý tiên tiến để đảm bảo chất lượng và hiệu suất của các bộ phận cuối cùng có thể đáp ứng các yêu cầu nghiêm ngặt của ngành hàng không.
Việc xử lý các bộ phận hàng không vũ trụ là một thách thức, chủ yếu ở các lĩnh vực sau:
Hình học phức tạp
Các bộ phận hàng không vũ trụ thường có hình học phức tạp đòi hỏi gia công có độ chính xác cao để đáp ứng yêu cầu thiết kế.
Gia công siêu hợp kim
Việc xử lý siêu hợp kim rất khó khăn và đòi hỏi các công cụ và quy trình đặc biệt để xử lý các vật liệu cứng này.
Các bộ phận lớn
Các bộ phận của tàu vũ trụ thường rất lớn, đòi hỏi phải có máy công cụ CNC lớn và thiết bị xử lý đặc biệt.
Kiểm soát chất lượng
Ngành công nghiệp hàng không vũ trụ cực kỳ khắt khe về chất lượng bộ phận và yêu cầu kiểm tra và kiểm soát chất lượng nghiêm ngặt để đảm bảo rằng mọi bộ phận đều đáp ứng các tiêu chuẩn.
Trong xử lý các bộ phận hàng không vũ trụ, độ chính xác và độ tin cậy là chìa khóa. Sự hiểu biết sâu sắc và kiểm soát tốt các vật liệu, quy trình, độ chính xác và những khó khăn trong gia công là chìa khóa để sản xuất các bộ phận hàng không vũ trụ chất lượng cao.
1 Thay đổi công cụ của tạp chí loại mũChế độ thay đổi công cụ địa chỉ cố định hầu hết được áp dụng và số công cụ được cố định tương ứng với số ghế công cụ. Hành động thay dao được thực hiện bằng chuyển động ngang của ổ dao và chuyển động lên xuống của trục xoay, gọi tắt là chế độ thay dao trục chính. Bởi vì nó không có bộ thao tác thay dao nên hành động chọn dao không thể được chọn trước trước hành động thay dao. Lệnh thay dao và lệnh chọn dao thường được viết trong cùng một đoạn chương trình và định dạng lệnh như sau: M06 T
Khi lệnh được thực thi, trước tiên ổ chứa dao sẽ xoay giá đỡ dao tương ứng với số dao trên trục xoay đến vị trí thay dao và chuyển dao trên trục quay trở lại giá đỡ dao, sau đó ổ chứa dao sẽ quay dao được chỉ định trong lệnh tới vị trí dao thay đổi và thay đổi trục xoay. Đối với ổ tích dao này, ngay cả khi TX x được thực thi trước M06, thì không thể chọn trước dao, * hành động lựa chọn dao cuối cùng vẫn được thực thi khi M06 được thực thi. Nếu không có TX X phía trước M06, hệ thống sẽ đưa ra cảnh báo.2 Thay dao của ổ đĩa và ổ xích
Hầu hết trong số họ sử dụng chế độ thay đổi công cụ địa chỉ ngẫu nhiên. Mối quan hệ tương ứng giữa số dao và số chỗ ngồi dao là ngẫu nhiên, nhưng mối quan hệ tương ứng của nó có thể được hệ thống NC ghi nhớ. Việc thay đổi dao của ổ dao này phụ thuộc vào người thao tác. Hành động của lệnh và thay đổi dao là: lệnh dao TX điều khiển chuyển động quay của ổ dao và chuyển dao đã chọn sang vị trí làm việc thay đổi dao, trong khi lệnh thay dao M06 điều khiển hành động của bộ thao tác thay dao để thực hiện trao đổi dao giữa dao trục chính và vị trí thay đổi dao của ổ dao. Lệnh chọn dao và lệnh thay dao có thể nằm trong cùng một đoạn chương trình hoặc được viết riêng. Các hành động tương ứng với lệnh chọn dao và thay dao cũng có thể được vận hành đồng thời hoặc riêng biệt. Định dạng hướng dẫn như sau:
Tx x M06;Khi lệnh được thực thi, trước tiên tạp chí công cụ sẽ chuyển công cụ TX sang vị trí thay đổi công cụ, sau đó người thao tác trao đổi công cụ của tạp chí công cụ với công cụ của trục xoay để nhận ra mục đích thay đổi công cụ TX đến trục chính. Sau khi đọc hai phương pháp trên, có thể thấy rằng phương pháp 2 trùng lặp hành động chọn dao với hành động gia công, do đó khi thay đổi dao không cần thiết phải chọn dao và thay đổi dao trực tiếp, điều này nâng cao hiệu quả công việc.
Như đã đề cập trước đó, lệnh thay dao của ổ tích dao có liên quan đến nhà sản xuất máy công cụ. Ví dụ: một số ổ chứa dao yêu cầu không chỉ trục Z phải quay về điểm thay dao mà cả trục Y cũng phải quay về điểm thay dao. Format chương trình như sau:
Khi viết các lệnh lựa chọn dao và thay dao trong cùng một phần chương trình, các quy tắc thực hiện của các dao từ các nhà sản xuất khác nhau cũng có thể khác nhau. Nếu có, bất kể thứ tự viết như thế nào, phải tuân thủ các quy tắc lựa chọn dao và thay dao. Một số quy tắc quy định rằng lệnh chọn dao phải được viết trước khi lệnh thay dao được thực thi. Nếu không, hành động là thay đổi công cụ trước rồi chọn công cụ đó, như minh họa trong chương trình trên. Trong trường hợp này, nếu lệnh chọn dao không được ghi trước khi lệnh M06 được thực thi, hệ thống sẽ đưa ra cảnh báo.
Liên hệ với: Ada Li
Tel:86 17722440307
WhatsApp: +86 17722440307
E-mail: Ada@honscn.com
Thêm: 4F, số. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Thâm Quyến, 518109, Trung Quốc