Honscn se concentre sur les services d'usinage CNC professionnels depuis 2003.
Les pièces de service CNC sont fournies par Honscn Co., Ltd, un fabricant responsable. Il est fabriqué grâce à un processus qui implique des tests de qualité rigoureux, tels que l'inspection des matières premières et de tous les produits finis. Sa qualité est rigoureusement contrôlée tout du long, depuis la conception jusqu'à la mise au point dans le respect des normes.
Au fil des ans, nous avons recueilli les commentaires des clients, analysé la dynamique de l'industrie et intégré la source du marché. En fin de compte, nous avons réussi à améliorer la qualité du produit. Grâce à ça, HONSCNLa popularité de s'est largement répandue et nous avons reçu des montagnes de bonnes critiques. Chaque fois que notre nouveau produit est lancé au public, il est toujours très demandé.
Chez Honscn, nous nous engageons à offrir le service à guichet unique le plus attentionné pour les clients. De la personnalisation, la conception, la production, à l'expédition, chaque processus est strictement contrôlé. Nous nous concentrons particulièrement sur le transport sûr des produits tels que les pièces de rechange CNC et choisissons les transitaires les plus fiables comme partenaires à long terme.
L'usinage de filetages est une application essentielle des centres d'usinage CNC. La qualité et l'efficacité de l'usinage des filetages influencent directement la qualité des pièces et l'efficacité de la production. Avec l'amélioration des performances des centres d'usinage CNC et des outils de coupe, les méthodes d'usinage des filetages s'améliorent également, tout comme la précision et l'efficacité. Afin de permettre aux techniciens de choisir judicieusement les méthodes d'usinage, d'améliorer l'efficacité de la production et d'éviter les accidents de qualité, plusieurs méthodes d'usinage couramment utilisées sur les centres d'usinage CNC sont résumées ci-dessous : 1. Taraudage
1.1 Classification et caractéristiques de l'usinage des tarauds. L'usinage des trous filetés par taraudage est la méthode d'usinage la plus courante. Elle est principalement applicable aux trous filetés de petit diamètre (d30) nécessitant peu de précision de positionnement.
Dans les années 1980, la méthode de taraudage flexible a été adoptée pour les trous filetés. La pince de taraudage flexible permettait de serrer le taraud. Cette pince permettait de compenser axialement les erreurs d'avance dues à la désynchronisation entre l'avance axiale de la machine-outil et la vitesse de broche, garantissant ainsi un pas correct. Cependant, la pince de taraudage flexible présente une structure complexe, un coût élevé, une grande facilité d'endommagement et une faible efficacité d'usinage. Ces dernières années, la performance des centres d'usinage CNC a progressivement évolué, et la fonction de taraudage rigide est devenue la configuration de base des centres d'usinage CNC.
Le taraudage rigide est donc devenu la principale méthode d'usinage de filetage. Le taraud est serré par une pince à ressort rigide, et l'avance de la broche est adaptée à la vitesse de broche contrôlée par la machine-outil. Comparé au mandrin de taraudage flexible, le mandrin à ressort présente les avantages d'une structure simple, d'un prix abordable et d'une large gamme d'applications. Outre le maintien du taraud, il peut également accueillir une fraise, un foret et d'autres outils, ce qui réduit le coût de l'outillage. De plus, le taraudage rigide permet l'usinage à grande vitesse, améliorant ainsi l'efficacité du centre d'usinage et réduisant les coûts de fabrication.
1.2 Détermination du diamètre du fond du trou fileté avant taraudage. L'usinage du fond du trou fileté a un impact important sur la durée de vie et la qualité du filetage. En général, le diamètre du foret du fond du trou fileté est proche de la limite supérieure de tolérance. Par exemple, pour un trou fileté M8 de 6,7 mm (0,27 mm), un diamètre de foret de 6,9 mm est recommandé. Cela permet de réduire la surépaisseur d'usinage et la charge du taraud, et d'en améliorer la durée de vie.
1.3 Choix du taraud. Lors du choix d'un taraud, il convient de le sélectionner en fonction des matériaux à traiter. L'outillage produit différents types de tarauds en fonction des différents matériaux à traiter, et une attention particulière doit être portée à leur sélection.
Le taraud est plus sensible aux matériaux traités que la fraise et l'aléseuse. Par exemple, l'utilisation d'un taraud pour usiner de la fonte et des pièces en aluminium peut facilement provoquer des pertes de filetage, des filetages irréguliers, voire des ruptures, entraînant la mise au rebut de la pièce. Il convient également de distinguer le taraud pour trou débouchant du taraud pour trou borgne. Le guide avant du taraud pour trou débouchant est long, et l'évacuation des copeaux se fait sur le premier copeau. Le guide avant du trou borgne est court, et l'évacuation des copeaux se fait sur le second copeau. L'usinage d'un trou borgne avec un taraud pour trou débouchant ne garantit pas la profondeur de filetage. De plus, si une pince de taraudage flexible est utilisée, il convient de noter que le diamètre de la poignée et la largeur des quatre côtés doivent être identiques à ceux de la pince de taraudage ; le diamètre de la poignée pour un taraudage rigide doit être identique à celui de la chemise de ressort. En résumé, seul un choix judicieux du taraud peut garantir un usinage fluide.
1.4 Programmation CN de l'usinage de tarauds. La programmation de l'usinage de tarauds est relativement simple. Le centre d'usinage se contente généralement de la sous-routine de taraudage et n'a plus qu'à assigner des valeurs à divers paramètres. Cependant, il convient de noter que la signification de certains paramètres varie selon les systèmes CN et les formats de sous-routine. Par exemple, le format de programmation du système de commande Siemens 840C est g84 x_y_r2_r3_r4_r5_r6_r7_r8_r9_r10_r13_. Seuls ces 12 paramètres doivent être assignés lors de la programmation.
2. Méthode de fraisage de filetage2.1 Caractéristiques du fraisage de filetageLe fraisage de filetage adopte un outil de fraisage de filetage et une liaison à trois axes du centre d'usinage, c'est-à-dire une interpolation d'arc sur les axes x et y et une avance linéaire sur l'axe z.
Le fraisage de filets est principalement utilisé pour l'usinage de gros trous filetés et de trous filetés dans des matériaux difficiles à usiner. Il présente les principales caractéristiques suivantes : (1) une vitesse d'usinage élevée, un rendement élevé et une grande précision. L'outil est généralement en carbure cémenté, ce qui lui confère une grande vitesse de déplacement. Sa grande précision de fabrication permet une précision de filetage élevée. (2) L'outil de fraisage offre un large champ d'application. Tant que le pas est identique, qu'il s'agisse d'un filetage à gauche ou à droite, un seul outil peut être utilisé, ce qui permet de réduire le coût de l'outil.
(3) Le fraisage facilite l'enlèvement des copeaux et le refroidissement, et offre de meilleures conditions de coupe que le taraudage. Il est particulièrement adapté au filetage de matériaux difficiles à usiner tels que l'aluminium, le cuivre et l'acier inoxydable, notamment pour le filetage de grandes pièces et de composants en matériaux précieux, garantissant ainsi la qualité du filetage et la sécurité de la pièce. (4) L'absence de guide d'outil permet l'usinage de trous borgnes à fond de filetage court et de trous sans rainure de retour d'outil. 2.2 Classification des outils de fraisage de filetage
Les fraises à fileter se divisent en deux types : la fraise à lame en carbure cémenté à serrage mécanique et la fraise à lame en carbure cémenté intégrée. La fraise à serrage mécanique offre un large éventail d'applications. Elle peut usiner des trous dont la profondeur de filetage est inférieure ou supérieure à la longueur de la lame. La fraise à lame en carbure cémenté intégrée est généralement utilisée pour usiner des trous dont la profondeur de filetage est inférieure à la longueur de l'outil. 2.3 Programmation CN du filetage : La programmation d'une fraise à fileter diffère de celle des autres outils. Un programme d'usinage incorrect peut facilement endommager l'outil ou entraîner des erreurs de filetage. Les points suivants doivent être pris en compte lors de la programmation :
(1) Premièrement, le trou fileté inférieur doit être usiné avec soin : le trou de petit diamètre doit être foré et le trou de plus grand doit être alésé afin de garantir la précision du filetage inférieur. (2) Lors de l'insertion et du retrait de l'outil, une trajectoire en arc de cercle, généralement d'un demi-tour, doit être adoptée, avec un demi-pas sur l'axe Z, afin de garantir la forme du filetage. La valeur de compensation du rayon de l'outil doit être alors définie. (3) L'arc de cercle sur les axes X et Y doit être interpolé pendant une semaine, et l'arbre principal doit effectuer un pas sur l'axe Z, sous peine de déformation désordonnée des filetages.
(4) Exemple de programme spécifique : le diamètre de la fraise à fileter est de 16. Le trou fileté est de M48 1,5, la profondeur du trou fileté est de 14. La procédure d’usinage est la suivante : (la procédure du trou inférieur fileté est omise, et le trou inférieur doit être alésé) G0 G90 g54 x0 y0g0 Z10 m3 s1400 m8g0 z-14,75 avance au filetage le plus profond G01 G41 x-16 Y0 F2000 déplacement vers la position d’avance, ajout d’une compensation de rayon G03 x24 Y0 z-14 I20 J0 f500 coupe avec 1/2 cercle d’arc G03 x24 Y0 Z0 I-24 J0 F400 coupe le filetage entier G03 x-16 Y0 z0,75 I-20 J0 f500 coupe avec 1/2 cercle d’arc G01 G40 x0 Y0 revient au centre et annule la compensation de rayon G0 Z100M30
3. Méthode d'encliquetage 3.1 Caractéristiques de la méthode d'encliquetage. Des trous filetés de grande taille peuvent parfois être rencontrés sur des pièces en carton. En l'absence de taraud et de fraise à fileter, une méthode similaire à celle du tour peut être adoptée.
Installer l'outil de tournage sur la barre d'alésage pour percer le filetage. L'entreprise a traité un lot de pièces avec un filetage M52x1,5 et un degré de positionnement de 0,1 mm (voir figure 1). En raison des exigences de positionnement élevées et de la taille importante du trou fileté, l'usinage avec un taraud est impossible, et il n'y a pas de fraise à fileter. Après l'essai, la méthode de prélèvement de filetage est adoptée pour garantir les exigences d'usinage. 3.2 Précautions pour la méthode de prélèvement de boucle
(1) Après le démarrage de la broche, un délai doit être respecté pour garantir que la broche atteigne sa vitesse nominale. (2) Lors du retrait de l'outil, s'il s'agit d'un outil à filetage rectifié manuellement, le retrait inverse de l'outil est impossible en raison de l'impossibilité d'un affûtage symétrique. L'orientation de la broche doit être respectée, l'outil se déplace radialement, puis le retrait de l'outil est effectué. (3) La fabrication de la barre de coupe doit être précise, notamment la position de la rainure de la fraise doit être constante. En cas d'irrégularité, il est impossible d'utiliser plusieurs barres de coupe pour l'usinage, sous peine de provoquer un gauchissement désordonné.
(4) Même une boucle très fine ne peut être crochetée avec un seul couteau, sous peine de perte de dents et de mauvaise rugosité de surface. Au moins deux couteaux doivent être utilisés. (5) L'efficacité de l'usinage est faible, ce qui ne s'applique qu'aux pièces uniques, aux petites séries, aux filetages à pas spécial et sans outil correspondant. 3.3 Procédures spécifiques
N5 G90 G54 G0 X0 Y0N10 Z15N15 S100 M3 M8
N20 G04 X5 retard pour que la broche atteigne la vitesse nominaleN25 G33 z-50 K1.5 tendeurN30 M19 orientation de la broche
Fraise N35 G0 X-2Rétraction d'outil N40 G0 z15Montage : JQ
Le travail des métaux CNC remplace d’autres technologies de fabrication dans plusieurs secteurs. Le domaine médical est considéré comme un domaine où les erreurs sont rares, et les mêmes règles s'appliquent lorsqu'il s'agit de fabriquer des pièces médicales, car des vies humaines sont en jeu dans ce domaine, et même de petites erreurs peuvent entraîner de graves problèmes de santé, voire la mort. Par conséquent, les techniques d’usinage utilisées par les machinistes pour produire des pièces médicales doivent prendre en charge des tolérances strictes et des mesures de haute précision.
Le travail des métaux CNC gagne en popularité en raison de sa capacité à produire en masse des résultats détaillés et précis, ce qui a conduit à une augmentation du nombre de producteurs utilisant des machines CNC dans l'industrie.
L'usinage CNC est une méthode de fabrication dans laquelle le mouvement de l'outil est contrôlé par un logiciel informatique préprogrammé. Tous les produits médicaux peuvent être fabriqués avec précision et rapidité à l’aide du fraisage et du tournage CNC. Examinons les principaux avantages de la demande d'usinage CNC dans le secteur de la santé:
Pas d'outil fixe
L'usinage CNC est inégalé en termes de rapidité d'exécution et d'investissement minimal dans la production en petits lots, même pour les produits jetables. Les pièces destinées à l'industrie médicale doivent souvent être fabriquées rapidement et en petites séries. Dans le même temps, le travail des métaux CNC permet de fabriquer des pièces sans outils dédiés, ce qui peut prolonger le processus de fabrication tout en offrant une excellente qualité et précision même sans l'utilisation d'outils.
Aucune limite de quantité
Après avoir créé un fichier CAO numérique (conception assistée par ordinateur), vous pouvez facilement créer un programme de découpe à partir de celui-ci en appuyant simplement sur un bouton. L’application de codage peut fabriquer une seule pièce ou n’importe quel nombre de pièces avec la plus grande précision et exactitude. Il s’agit d’un avantage considérable lors de la création de pièces jetables ou personnalisées, telles que des dispositifs médicaux hautement spécialisés, des appareils, des équipements, des prothèses et d’autres produits médicaux ou chirurgicaux. D'autres procédures nécessitent une taille de commande minimale pour obtenir les matières premières requises, ce qui rend certains projets peu pratiques, tandis que l'usinage CNC n'exige pas de taille de commande minimale.
Haute tolérance
De nombreux types d’équipements médicaux nécessitent une large plage de tolérance, et avec les machines CNC, cela est facilement réalisable. La finition de surface est généralement très bonne et nécessite un post-traitement minimal, ce qui permet d'économiser du temps et de l'argent, mais ce n'est pas la considération la plus importante. En général, la chose la plus importante à retenir concernant les fournitures et équipements médicaux est qu’ils doivent être adaptés à leur usage, et tout écart par rapport aux normes peut entraîner un désastre.
Machine rapide
Les machines CNC sont plus rapides et peuvent fonctionner 24 heures sur 24, 365 jours par an. Hormis l’entretien de routine, les réparations et les mises à niveau sont les seuls moments où les fabricants cessent d’utiliser des équipements.
Les fichiers CAO numériques sont légers et flexibles
Les concepteurs de produits, les médecins spécialistes et les professionnels de la fabrication peuvent transférer rapidement et facilement des programmes numériques d'un endroit à un autre. La technologie améliore considérablement les capacités d'usinage CNC pour produire des dispositifs et des équipements médicaux spécialisés de haute qualité, quel que soit l'emplacement géographique, à tout moment et en tout lieu. Cette fonctionnalité de l’usinage CNC est très pratique, en particulier dans les environnements médicaux où le temps est critique.
L'usinage CNC a révolutionné la façon dont les dispositifs médicaux sont conçus, fabriqués, personnalisés et utilisés. La précision, la personnalisation et la rapidité de l'usinage CNC transforment les soins aux patients, permettant un traitement personnalisé et améliorant les résultats chirurgicaux.
La technologie ouvre la voie à des innovations révolutionnaires en matière de prothèses, d’appareils et de thérapies, et entraîne des progrès dans de nombreux domaines des soins de santé.
L'usinage CNC apporte de nombreux avantages au domaine médical, notamment:
Précision et exactitude
La précision de fonctionnement des machines-outils CNC est extrêmement élevée. Ce niveau de précision est essentiel pour la production d’instruments chirurgicaux, d’implants et de microdispositifs utilisés en chirurgie mini-invasive. La précision et la cohérence apportées par l'usinage CNC améliorent les performances lors des procédures médicales et réduisent le risque de complications.
Ceci est particulièrement important pour les chirurgiens qui s’appuient sur des instruments ultra-sophistiqués et fiables pour effectuer des tâches délicates. Des poignées de scalpel aux assistants chirurgicaux robotisés, l’usinage CNC fournit des outils de haute qualité qui améliorent la précision et la sécurité des patients.
Personnalisation et personnalisation
L'usinage CNC permet la création de pièces et de dispositifs médicaux personnalisés basés sur l'anatomie unique d'un patient. Cette capacité permet de créer des implants orthopédiques personnalisés, des prothèses dentaires, des aides auditives et d'autres appareils.
À l'aide de données spécifiques au patient telles que des scans 3D ou des images IRM, les machines CNC peuvent créer avec précision des éléments parfaitement adaptés au corps du patient. Cela améliore le confort, la fonction et l’efficacité du traitement, et accélère le rétablissement du patient.
Forme et structure complexes
L'usinage CNC peut produire des géométries et des structures internes complexes qui sont souvent difficiles à réaliser avec d'autres méthodes de fabrication. La capacité de sculpter avec précision des cavités internes, des canaux et des éléments délicats est particulièrement précieuse lors de la fabrication d'implants, de microdispositifs et d'instruments chirurgicaux.
Prototypage rapide
Le prototypage permet aux ingénieurs médicaux et aux concepteurs de créer des modèles fonctionnels de pièces et de dispositifs, leur permettant ainsi d'évaluer la conception, l'assemblage et la fonctionnalité avant de démarrer la production. La combinaison d'un logiciel de conception assistée par ordinateur (CAO) et de machines-outils CNC permet de traduire rapidement les conceptions numériques en prototypes physiques.
Cela permet des améliorations de conception itératives et contribue à garantir que les dispositifs médicaux sont minutieusement testés et optimisés avant leur commercialisation. Dans un domaine en évolution, le prototypage rapide peut renforcer l’innovation et contribuer à accélérer la commercialisation de nouvelles avancées médicales.
Optimisation du processus
L'intégration de l'usinage CNC avec des technologies avancées telles que l'automatisation et l'intelligence artificielle (IA) minimise les erreurs et permet des processus de contrôle qualité automatisés. Cela augmente l’efficacité, réduit le temps de production et améliore la qualité des produits, ce qui contribue à améliorer les résultats pour les patients.
De plus, les systèmes CNC automatisés peuvent fonctionner en continu avec une interaction homme-machine minimale entre les opérations. Certaines machines CNC sont également capables d'usiner sur plusieurs axes et d'effectuer des tâches sur différentes surfaces de pièces en même temps.
En reprogrammant les machines, les fabricants peuvent rapidement basculer entre la production d’un type de pièce et d’un autre. Cela réduit les temps de conversion et signifie que différentes pièces peuvent être fabriquées sur la même machine en une seule équipe. Ces fonctionnalités contribuent à accélérer les cycles de production, à réduire les temps d’arrêt et à augmenter la production globale.
Sélection de matériaux flexible
L'usinage CNC convient à une large gamme de matériaux, notamment les métaux, les plastiques et les composites. Cette polyvalence permet aux fabricants de prendre en compte des facteurs tels que la biocompatibilité, la durabilité et la fonctionnalité pour sélectionner le matériau le plus approprié pour une application médicale spécifique.
Réduction des coûts
Bien que les machines CNC industrielles puissent être coûteuses, elles offrent d’importantes opportunités de réduction des coûts à long terme. En éliminant le besoin de gabarits, de fixations et d'outils dédiés pour chaque pièce, l'usinage CNC permet de minimiser le temps de configuration, de simplifier la production et de réduire les coûts de fabrication.
La technologie réduit également les déchets et les coûts grâce à l’optimisation des matériaux. Ceci est particulièrement important dans le domaine médical, car les implants sont souvent fabriqués avec des matériaux de grande valeur tels que le titane et le platine. L'efficacité et la productivité accrues de l'usinage CNC contribuent également à des économies de coûts au fil du temps.
En raison de la nature critique des dispositifs et composants médicaux, l’industrie médicale nécessite des produits de haute qualité et de haute précision. Par conséquent, l’usinage CNC est largement utilisé dans les applications médicales. Ci-dessous, nous présenterons ce que sont les produits médicaux d'usinage CNC ?
1. Implants médicaux
Implants orthopédiques : l'usinage CNC est couramment utilisé pour fabriquer des implants orthopédiques, tels que les arthroplasties de la hanche et du genou.
Implants dentaires : utilisez l'usinage CNC pour fabriquer des implants dentaires précis et personnalisés.
2. Équipement médical électronique
Composants IRM : certains composants des machines d'imagerie par résonance magnétique (IRM), tels que les structures, les supports et les boîtiers, sont souvent usinés à l'aide de CNC.
Boîtiers d'équipement de diagnostic : l'usinage CNC est utilisé pour fabriquer des boîtiers et des boîtiers pour une large gamme d'équipements de diagnostic médical, garantissant des dimensions précises, une durabilité et une compatibilité avec les composants électroniques.
3. Instruments chirurgicaux médicaux
Scalpels et lames : L’usinage CNC est utilisé pour produire des instruments chirurgicaux tels que des scalpels et des lames.
Pincettes et pinces : Les instruments chirurgicaux de conception complexe, tels que les pinces et les pinces, sont généralement usinés CNC pour obtenir la précision souhaitée.
4. Prothèses et orthèses
Composants prothétiques personnalisés : l'usinage CNC est utilisé pour fabriquer des composants prothétiques personnalisés, notamment des composants de chambre d'acceptation, des joints et des connecteurs.
Supports orthopédiques : les composants des supports orthopédiques qui assurent le soutien et l'alignement de diverses parties du corps peuvent être usinés CNC.
5. Assemblage d'endoscope
Boîtiers et pièces d'endoscope : l'usinage CNC est utilisé pour produire des pièces d'équipement d'endoscope, notamment des boîtiers, des connecteurs et des pièces structurelles.
6. Matériel médical prototype
Composants de prototypage : l'usinage CNC est largement utilisé pour le prototypage rapide de divers dispositifs médicaux.
F finalement, m L’usinage de dispositifs médicaux est un processus qui nécessite un haut niveau de précision et d’exactitude. Cette technologie est donc très adaptée à l’usinage CNC.
Précision Honscn est un fabricant fiable de composants médicalement critiques pour les instruments et outils chirurgicaux ainsi que pour le prototypage de dispositifs médicaux . Avec 20 ans d’expérience dans la fabrication CNC, nous sommes motivés par la nécessité de garantir les tolérances et la précision les plus strictes pour chaque pièce usinée. Nos mécaniciens qualifiés peuvent adapter la conception de pièces usinées aux normes les plus élevées pour tous les aspects de l’industrie médicale. Vous souhaitez démarrer votre projet d’usinage CNC chez Honscn Precision ? Cliquez ici pour démarrer votre service personnalisé
The requirements of lightweight, safety and decoration in modern automobile manufacturing industry drive the development of traditional welding technology in the field of automobile plastics. In recent years, with the application of a variety of high-end technologies such as ultrasonic, vibration friction and laser technology in the field of automobile plastic parts manufacturing, the technical level and supporting capacity of domestic automobile parts manufacturing industry have been greatly improved.As for the welding and welding process of automotive interior parts, hot plate welding, laser welding, ultrasonic welding, non-standard ultrasonic welding machine, vibration friction machine, etc. have been developed. In the process, one-time overall or complex structure welding can be realized, and the optimal design requirements can be achieved on the basis of simplifying mold design and reducing molding cost.For typical interior and exterior trim parts, large components with high surface quality and complex structure, such as instrument panel, door panel, column, glove box, engine intake manifold, front and rear bumper, must select corresponding welding technology, and adopt appropriate welding process according to the requirements of interior structure, performance, materials and production cost. All these applications can not only complete the corresponding manufacturing process, but also ensure the excellent quality and perfect shape of products.
Hot plate welding machine: the hot plate welding machine equipment can control the horizontal or vertical movement of the hot plate welding die, and the transmission system is driven by pneumatic, hydraulic drive or servo motor. The advantages of hot plate welding technology are that it can be applied to workpieces of different sizes without area limitation, applicable to any welding surface, allowing plastic allowance compensation, ensuring welding strength, and adjusting welding procedures according to the needs of various materials (such as adjusting welding temperature, welding time, cooling time, input air pressure, welding temperature and switching time, etc.), In the welding process, the equipment can maintain good stability, ensure consistent welding effect and accuracy of workpiece height after machining.
Another feature of the horizontal hot plate welding machine is that it can rotate at 90 for cleaning. The processing period of hot plate welding machine can generally be divided into: original position (the hot plate does not move with the upper and lower molds), heating period (the hot plate moves between the upper and lower molds, and the heat of the hot plate moves down the upper and lower molds to dissolve the welding surfaces of the upper and lower workpieces), transfer period (the upper and lower molds return to the original position, and the hot plate exits), welding and cooling period (the upper and lower dies are joined to make the workpiece welded at the same time and cooled for forming), and return to the original position (the upper and lower dies are separated, and the welded workpiece can be taken out).
In the early automobile industry, these welding equipment were relatively common, but with the continuous improvement of the requirements for the structure, shape and service life of the parts themselves, the requirements for their processing equipment are higher and higher. Moreover, because the size of the equipment is limited to the size of the welded parts, the equipment and equipment driving mode should be selected according to the size of the parts in the design. The most important thing is the parts The heating area is large and there is large deformation. In addition, the welding process distinguishes the polarity and non polarity of welding plastics, resulting in the gradual replacement of hot plate welding by ultrasonic welding and laser welding. The main parts used for welding in China include automotive plastic fuel tank, battery, tail lamp, glove box, etc.
Laser welding: laser welding technology is widely used in today's medical device manufacturing industry. Only a few manufacturers in the automotive industry use laser welding air inlet pipe, etc. because it is a new welding technology, it is not very mature to a certain extent, but it is believed that it will be widely used in the near future because of its remarkable welding characteristics. Its advantage is that it can weld TPE / TP Or TPE products; under the condition of no vibration, nylon, workpiece with sensitive electronic parts and three-dimensional welding surface can be welded, which can save cost and reduce waste products.
In the welding process, the resin melts less, the surface can be welded tightly, and there is no flash or glue overflow. It is allowed that rigid plastic parts can be welded without glue overflow and vibration. Generally, workpieces with soft or irregular welding surfaces can be welded evenly regardless of the size of workpieces, especially for large-scale production of high-tech micro parts. However, laser conduction is limited. "Quasi synchronous" laser welding technology uses a scanning mirror to transmit the laser beam to the welding surface at the speed of 10m / s according to the welding shape. It can walk on the welding surface as many as 40 times in 1s. The plastic around the welding surface melts and the two workpieces are welded after pressurization.
Laser welding can be roughly divided into: solid Nd-YAG system (laser beam is generated by crystal) and diodesystem (high power diode laser) , CAD data programming. All materials can be laser welded with body materials, among which acrylonitrile butadiene styrene is most suitable for laser welding with other materials, nylon, polypropylene and polyethylene can only be welded with their own body materials, and other materials have general applicability for laser welding.fqj
Plan stratégique : vous devez déterminer si vous recherchez une relation à long terme. Vous devez trouver une bonne adéquation culturelle et stratégique. Faites preuve de diligence raisonnable et prenez le temps d'évaluer la réputation professionnelle d'un fabricant dans son secteur. Lors de vos recherches, ne vous contentez pas de consulter les avis positifs pour évaluer sa qualité, mais identifiez les signaux d'alerte et les risques potentiels.
Le type de processus Différents fabricants utilisent différents procédés de fabrication qui incluent l'extrusion, la coextrusion, la triextrusion ainsi que les revêtements par extrusion à tête transversale.
Les matières plastiques. Les matières plastiques extrudées sont utilisées dans différentes applications et chacune possède ses propres propriétés. Lors du choix d'un fabricant, il est primordial de bien choisir les matières d'extrusion utilisées pour vos pièces sur mesure. Vous devez vous assurer que les pièces seront fabriquées avec succès et qu'elles offriront les performances attendues. En cas de doute sur le type de matière plastique extrudée le mieux adapté à vos pièces, un ingénieur peut vous conseiller. Il existe également de nombreuses nuances de matières extrudables ; il est donc conseillé de choisir une entreprise capable de produire la nuance dont vous avez besoin.
Si vous avez un besoin de production important, il est essentiel de connaître les capacités de production du fabricant. Ce dernier doit également être en mesure de vous offrir des compétences étendues en matière de conception, d'outillage et de fabrication. Grâce à ces compétences en extrusion plastique, un fabricant est en mesure de produire des pièces sur mesure de haute qualité, répondant aux exigences de ses clients. Les finitions doivent être prises en compte : mates, brillantes ou texturées. Votre fabricant de pièces plastiques sur mesure doit donc connaître les dernières finitions du marché.
Outillage : l'extrusion plastique sur mesure nécessite un outillage, bien moins coûteux que le moulage par injection. Un fabricant d'extrusion de qualité se doit de vous offrir des capacités d'outillage de pointe. Il doit disposer d'une équipe expérimentée qui conçoit, développe et teste tous les outils. Cela améliorera la productivité, l'efficacité, la sécurité et réduira les coûts.
Service client : collaborer avec un fabricant simplifie le processus grâce à un service client efficace et une communication fluide. Une entreprise manufacturière performante se distingue par la qualité de son service client. Par exemple, si vous avez une demande de dernière minute ou souhaitez modifier votre commande, vous devez savoir que quelqu'un sera là pour vous assister et vous accompagner. C'est d'autant plus important si vous recherchez une relation durable. Pour réussir en tant que fabricant de pièces en plastique sur mesure, un service client efficace et agréable est essentiel.
Conclusion : Voici quelques points à prendre en compte lors de votre recherche du bon fabricant. En évaluant ses réalisations et en vous assurant qu'il peut répondre à tous vos besoins à un prix raisonnable, vous trouverez une entreprise de qualité.