cnc machiningn parts has been on the market for years manufactured by Honscn Co.,Ltd, and it is at the forefront of the industry with good price and quality. This product is the lifeline of the company and adopts the highest standard for the selection of raw materials. The improved process and rigorous quality inspection promote the development of our company. Modern assembly line operation guarantees product quality while ensuring production speed.
'The quality of HONSCN products is truly amazing!' Some of our customers make comments like this. We always accept compliments from our customers due to our high quality products. Compared with other similar products, we pay more attention to the performance and details. We are determined to be the best in the market, and in fact, our products have been widely recognized and favored by customers.
At Honscn, customers can many considerate services - all products, including cnc machiningn parts can be made to measure. Professional OEM/ODM service is available. Samples for testing is provided as well.
In recent years, the global aerospace industry has made remarkable achievements, which cannot be separated from the important support of CNCM machining technology. As an efficient and high-precision machining method, CNCM technology is increasingly widely used in the aerospace field, which provides a strong guarantee for the performance improvement of aerospace equipment.
According to international market research institutions, the global aerospace market size will maintain steady growth in the next decade and is expected to reach about $200 billion by 2028. In China, the size of the aerospace market is also continuing to expand and is expected to reach about 250 billion yuan by 2026. In this context, the application of CNCM machining technology in the aerospace industry is particularly important.
It is understood that CNC machining technology in the aerospace field can produce accurate, precise, complex parts, such as aircraft engines, turbine blades, aircraft structural parts, etc. These components need to have high accuracy and stability to ensure the safety and performance of aerospace spacecraft. According to relevant data, the global aerospace parts market is expected to reach about $12 billion by 2026.
In addition, the high efficiency of CNC machining technology in the aerospace field has also been widely used. In the assembly process of large aerospace spacecraft such as aircraft and rockets, CNC machining technology can achieve rapid and mass production and improve production efficiency. According to statistics, the global aerospace assembly market size is expected to reach about $60 billion by 2026.
In terms of materials, the compatibility of CNC machining technology in the aerospace field has been fully reflected. With the increasing application of new materials in the aerospace field, such as carbon fiber composite materials, titanium alloys, etc., CNC machining technology can realize the efficient processing of these materials to ensure the performance and quality of parts. According to statistics, the global aerospace materials market size is expected to reach about $35 billion by 2026.
It is worth mentioning that CNC machining technology also supports the manufacture of customized parts in the aerospace sector. This is of great significance for the manufacture of aerospace spacecraft in special scenarios. According to statistics, the global aerospace custom parts market size is expected to reach about $2.5 billion by 2026.
In summary, the application of CNCM machining technology in the aerospace industry provides a strong guarantee for the performance improvement of aerospace equipment. In the context of the rapid development of China's aerospace industry, the importance of CNC machining technology is self-evident. With the continuous expansion of the aerospace market, the application prospect of CNC machining technology in the aerospace industry will be broader. We have reason to believe that CNC machining technology will continue to help the prosperity of aerospace industry.
In the field of machining, after CNC machining process methods and division of processes, the main content of the process route is to rationally arrange these processing methods and processing sequence. In general, CNC machining of mechanical parts includes cutting, heat treatment and auxiliary processes such as surface treatment, cleaning and inspection. The sequence of these processes directly affects the quality, production efficiency and cost of the parts. Therefore, when designing CNC machining routes, the order of cutting, heat treatment and auxiliary processes should be reasonably arranged, and the connection problem between them should be solved.
In addition to the basic steps mentioned above, factors such as material selection, fixture design and equipment selection need to be considered when developing a CNC machining route. Material selection is directly related to the final performance of parts, different materials have different requirements for cutting parameters; The fixture design will affect the stability and accuracy of the parts in the process of processing; Equipment selection needs to determine the type of machine tool suitable for its production needs according to the characteristics of the product.
1, the processing method of precision machinery parts should be determined according to the characteristics of the surface. On the basis of familiar with the characteristics of various processing methods, mastering the processing economy and surface roughness, the method that can ensure the processing quality, production efficiency and economy is selected.
2, select the appropriate drawing positioning reference, according to the principle of crude and fine reference selection to reasonably determine the positioning reference of each process.
3, When developing the machining process route of the parts, it is necessary to divide the rough, semi-fine and finishing stages of the parts on the basis of the analysis of the parts, and determine the degree of concentration and dispersion of the process, and reasonably arrange the processing sequence of the surfaces. For complex parts, several schemes can be considered first, and the most reasonable processing scheme can be selected after comparison and analysis.
4, determine the processing allowance and process size and tolerance of each process.
5, select machine tools and workers, clips, quantities, cutting tools. The selection of mechanical equipment should not only ensure the quality of processing, but also be economical and reasonable. Under the conditions of mass production, general machine tools and special jigs should generally be used.
6, Determine the technical requirements and inspection methods of each major process.Determining the cutting amount and time quota of each process is usually decided by the operator for a single small batch production plant. It is generally not specified in the machining process card. However, in the medium batch and mass production plants, in order to ensure the rationality of production and the balance of rhythm, it is required that the cutting amount must be specified, and must not be changed at will.
First rough and then fine
The processing accuracy is gradually improved according to the order of rough turning - semi-fine turning - fine turning. The rough lathe can remove most of the machining allowance of the workpiece surface in a short time, thereby increasing the metal removal rate and meeting the requirement of the uniformity of the allowance. If the residual amount left after the rough turning does not meet the finishing requirements, it is necessary to arrange a semi-finishing car for finishing. The fine car needs to ensure that the outline of the part is cut according to the drawing size to ensure the processing accuracy.
Approach first and then far
Under normal circumstances, the parts close to the tool should be processed first, and then the parts far away from the tool to the tool should be processed to shorten the moving distance of the tool and reduce the empty travel time. In the process of turning, it is beneficial to maintain the stiffness of the blank or semi-finished product and improve its cutting conditions.
The principle of internal and external intersection
For parts that have both an inner surface (inner cavity) and an outer surface to be processed, when arranging the processing sequence, the inner and outer surfaces should be roughed first, and then the inner and outer surfaces should be finished. Must not be part of the surface of the part (outer surface or inner surface) after processing, then processing other surfaces (inner surface or outer surface).
Base first principle
Priority should be given to the surface used as the finishing reference. This is because the more accurate the surface of the positioning reference, the smaller the clamping error. For example, when machining shaft parts, the center hole is usually machined first, and then the outer surface and end face are machined with the center hole as the precision basis.
The principle of the first and the second
The main working surface and assembly base surface of the parts should be processed first, so as to find out the modern defects on the main surface in the blank early. The secondary surface can be interspersed, placed on the main machined surface to a certain extent, before the final finishing.
The principle of the face before the hole
The plane outline size of the box and bracket parts is large, and the plane is generally processed first, and then the hole and other sizes are processed. This arrangement of processing sequence, on the one hand with the processed plane positioning, stable and reliable; On the other hand, it is easy to process the hole on the machined plane, and can improve the processing accuracy of the hole, especially when drilling, the axis of the hole is not easy to deviate.
When developing the machining process of parts, it is necessary to select the appropriate processing method, machine tool equipment, clamp measuring tools, blank and technical requirements for workers according to the production type of parts.
The success or failure of aerospace operations depends on the accuracy, precision and quality of the components used. For this reason, aerospace companies utilize advanced manufacturing techniques and processes to ensure that their components fully meet their needs. While new manufacturing methods such as 3D printing are rapidly gaining popularity in the industry, traditional manufacturing methods such as machining continue to play a key role in the production of parts and products for aerospace applications. Such as better CAM programs, application-specific machine tools, enhanced materials and coatings, and improved chip control and vibration damping - have significantly changed the way aerospace companies manufacture critical aerospace components. However, sophisticated equipment alone is not enough. Manufacturers must have the expertise to overcome the material processing challenges of the aerospace industry.
The manufacture of aerospace parts first requires specific material requirements. These parts typically require high strength, low density, high thermal stability and corrosion resistance to handle extreme operating conditions.
Common aerospace materials include:
1. High strength aluminum alloy
High-strength aluminum alloys are ideal for aircraft structural parts because of their light weight, corrosion resistance and ease of processing. For example, 7075 aluminum alloy is widely used in the manufacture of aerospace parts.
2. titanium alloy
Titanium alloys have excellent strength to weight ratio and are widely used in aircraft engine parts, fuselage components and screws.
3. Superalloy
Superalloys maintain strength and stability at high temperatures and are suitable for engine nozzles, turbine blades and other high-temperature parts.
4. Composite material
Carbon fiber composites perform well in reducing structural weight, increasing strength and reducing corrosion, and are commonly used in the manufacture of casings for aerospace parts and spacecraft components.
Process planning and design
Process planning and design are required before processing. At this stage, it is necessary to determine the overall processing scheme according to the design requirements of the parts and material characteristics. This includes determining the process of processing, the choice of machine tool equipment, the selection of tools, etc. At the same time, it is necessary to carry out detailed process design, including the determination of cutting profile, cutting depth, cutting speed and other parameters.
Material preparation and cutting process
In the process of aerospace parts processing, the first need to prepare working materials. Usually, the materials used in aviation parts include high-strength alloy steel, stainless steel, aluminum alloy and so on. After the material preparation is completed, the cutting process is entered.
This step involves the selection of machine tools, such as CNC machine tools, lathes, milling machines, etc., as well as the selection of cutting tools. The cutting process needs to strictly control the feed speed, cutting speed, cutting depth and other parameters of the tool to ensure the dimensional accuracy and surface quality of the parts.
Precision machining process
Aerospace components are usually very demanding in terms of size and surface quality, so precision machining is an indispensable step. At this stage, it may be necessary to use high-precision processes such as grinding and EDM. The goal of the precision machining process is to further improve the dimensional accuracy and surface finish of the parts, ensuring their reliability and stability in the aviation field.
Heat treatment
Some aerospace parts may require heat treatment after precision machining. The heat treatment process can improve the hardness, strength and corrosion resistance of the parts. This includes heat treatment methods such as quenching and tempering, which are selected according to the specific requirements of the parts.
Surface coating
In order to improve the wear resistance and corrosion resistance of aviation parts, surface coating is usually required. Coating materials can include cemented carbide, ceramic coating, etc. Surface coatings can not only improve the performance of parts, but also extend their service life.
Assembly and testing
Do parts assembly and inspection. At this stage, the parts need to be assembled in accordance with the design requirements to ensure the accuracy of the match between the various parts. At the same time, rigorous testing is required, including dimensional testing, surface quality testing, material composition testing, etc., to ensure that parts meet aviation industry standards.
Strict quality control: The quality control requirements of aviation parts are very strict, and strict testing and control are required at each processing stage of aviation parts to ensure that the quality of parts meets the standards.
High precision requirements: Aerospace components typically require very high accuracy, including dimensional accuracy, shape accuracy and surface quality. Therefore, high-precision machine tools and tools need to be used in the processing process to ensure that the parts meet the design requirements.
Complex structure design: Aviation parts often have complex structures, and it is necessary to use multi-axis CNC machine tools and other equipment to meet the processing needs of complex structures.
High temperature resistance and high strength: aviation parts usually work in harsh environments such as high temperature and high pressure, so it is necessary to choose high temperature resistance and high strength materials, and carry out the corresponding heat treatment process.
Overall, aerospace parts processing is a highly technology-intensive, precision demanding process that requires strict operating processes and advanced processing equipment to ensure that the quality and performance of the final parts can meet the stringent requirements of the aviation sector.
Aerospace parts processing is challenging, mainly in the following areas:
Complex geometry
Aerospace parts often have complex geometrics that require high-precision machining to meet design requirements.
Super alloy processing
The processing of superalloys is difficult and requires special tools and processes to handle these hard materials.
Large parts
The parts of the spacecraft are usually very large, requiring large CNC machine tools and special processing equipment.
Quality control
The aerospace industry is extremely demanding on part quality and requires rigorous quality control and inspection to ensure that every part meets the standards.
In aerospace parts processing, precision and reliability are key. A deep understanding and fine control of materials, processes, precision and machining difficulties is the key to manufacturing high-quality aerospace parts.
1. Fault phenomenonWhen changing the knife, the manipulator is stuck and cannot change the knife. The position of the manipulator for changing the knife is offset, and the knife is changed.2 fault analysis and treatment
2.1 tool change principleThe machining center is a rotary tool magazine, and the tool change mechanism is cam type. The tool change process is as follows:(1) Write m06t01 to start the tool change and tool selection cycle.
(2) The spindle will stop at the oriented spindle stop point, the coolant stops, and the z-axis moves to the tool change position (second reference point).(3) Select the tool. After NC compiles it to PLC according to the t command, start selecting the tool. The tool magazine motor rotates and rotates the target tool number to the tool change point of the tool magazine. Note that the t command is the tool sleeve position of the tool magazine at this time.(4) The tool change motor drives the cam mechanism to rotate 90 from the parking position to grasp the tool in the effective tool sleeve and the tool in the spindle. At the same time, detect the change of the proximity switch state of the cam mechanism, the PMC output sends out the tool loosening command, the tool magazine tool sleeve tool loosening and the spindle tool loosening solenoid valve are powered on, the cam continues to rotate, drive the manipulator down, push down the tool handle and prepare for exchange. As shown in Figure 1.
(5) The manipulator rotates 180 to exchange the tool, the cam continues to move upward, install the tool into the spindle, and install the tool on the original spindle into the tool sleeve at the tool change position of the tool magazine. At the same time, the detection switch sends a tool tightening command to PMC, the solenoid valve loses power, the shaft tool handle is clamped, the butterfly spring retracts, and the spindle tool is clamped.(6) Change to the manipulator, continue to rotate 90 , and stop completing a set of tool change actions.2.2 fault analysis
Change the tool to the fourth step of 2.1. The tool change manipulator is stuck, and the spindle has been loosened for blowing, but the tool cannot be pulled out. Cut off the power and manually turn the tool change motor. After completing a tool change action, manually load and unload the tool, the action is normal, and the problems of spindle tightening tool are preliminarily eliminated. When the tool change process is performed again, the manipulator gets stuck and the manipulator claw at the tool magazine falls off. After the tool change is found, the manipulator installs the tool on the spindle and the position is offset, as shown in Figure 2.
After the tool is removed, it is found that the action is normal. The reason for this situation may be the offset between the manipulator and the spindle, or the deviation of the accuracy of the manipulator axis relative to the spindle axis, and the inaccurate positioning of the spindle will also lead to the offset of the tool change position. Implement the tool change action step by step, check the accurate positioning of the spindle, and eliminate the fault caused by inaccurate positioning. According to the table, the mechanicalThe axial position and rotation center distance of hand, knife sleeve and spindle are consistent, so the fault of mechanical jamming of mechanical mobile phone is also eliminated.
Recently, this machine tool mainly processes stainless steel and other material workpieces, with large cutting volume and heavy load. It runs under re cutting for a long time. It is found that the manipulator is not loose and the telescopic action of the manipulator claw is flexible. However, it is found that the adjustment block on the manipulator is worn. It is disassembled and observed that the adjustment block is mainly used to clamp the tool handle. After re repair and processing, try again, The offset disappears at the spindle position. The main cause of this fault is the large impact of the manipulator and frequent tool change, resulting in the loosening and wear of the clamping claw, as shown in Figure 3.
Contact: Ada Li
Tel: +86 17722440307
WhatsApp: +86 17722440307
E-mail: Ada@honscn.com
Add: 4F, No. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China