Części do obróbki cnc istnieją na rynku od lat i są produkowane przez Honscn Co., Ltd i znajdują się w czołówce branży dzięki dobrej cenie i jakości. Ten produkt jest kołem ratunkowym firmy i przyjmuje najwyższy standard doboru surowców. Ulepszony proces i rygorystyczna kontrola jakości sprzyjają rozwojowi naszej firmy. Nowoczesna praca linii montażowej gwarantuje jakość produktu przy jednoczesnym zapewnieniu szybkości produkcji.
„Jakość HONSCN produkty są naprawdę niesamowite!” Niektórzy z naszych klientów zamieszczają takie komentarze. Zawsze przyjmujemy komplementy od naszych klientów ze względu na nasze wysokiej jakości produkty. W porównaniu z innymi podobnymi produktami zwracamy większą uwagę na wykonanie i szczegóły. Jesteśmy zdeterminowani, aby być najlepszymi na rynku, a nasze produkty są powszechnie rozpoznawane i doceniane przez klientów.
W Honscn klienci mogą korzystać z wielu przemyślanych usług - wszystkie produkty, w tym części obrabiane cnc, można wykonać na wymiar. Dostępna jest profesjonalna usługa OEM/ODM. Dostarczane są również próbki do testów.
W ostatnich latach światowy przemysł lotniczy poczynił niezwykłe osiągnięcia, których nie można oddzielić od istotnego wsparcia technologii obróbki CNCM. Jako wydajna i precyzyjna metoda obróbki, technologia CNCM jest coraz powszechniej stosowana w przemyśle lotniczym, co stanowi silną gwarancję poprawy wydajności sprzętu lotniczego.
Według międzynarodowych instytucji zajmujących się badaniami rynku wielkość światowego rynku lotniczego i kosmicznego będzie stale rosła w ciągu następnej dekady i oczekuje się, że do 2028 r. osiągnie około 200 miliardów dolarów. W Chinach wielkość rynku lotniczego i kosmicznego również stale rośnie i oczekuje się, że do 2026 r. osiągnie około 250 miliardów juanów. W tym kontekście szczególnie istotne jest zastosowanie technologii obróbki CNCM w przemyśle lotniczym.
Rozumie się, że technologia obróbki CNC w przemyśle lotniczym może wytwarzać dokładne, precyzyjne i złożone części, takie jak silniki lotnicze, łopatki turbin, części konstrukcyjne samolotów itp. Aby zapewnić bezpieczeństwo i wydajność statków kosmicznych, elementy te muszą charakteryzować się wysoką dokładnością i stabilnością. Według odpowiednich danych oczekuje się, że do roku 2026 światowy rynek części lotniczych i kosmicznych osiągnie wartość około 12 miliardów dolarów.
Ponadto szeroko stosowana jest również wysoka wydajność technologii obróbki CNC w przemyśle lotniczym. W procesie montażu dużych statków kosmicznych, takich jak samoloty i rakiety, technologia obróbki CNC może zapewnić szybką i masową produkcję oraz poprawić wydajność produkcji. Według statystyk oczekuje się, że do roku 2026 wielkość światowego rynku montażu samolotów i kosmonautyki osiągnie około 60 miliardów dolarów.
Jeśli chodzi o materiały, w pełni odzwierciedlono kompatybilność technologii obróbki CNC w przemyśle lotniczym. Wraz z rosnącym zastosowaniem nowych materiałów w przemyśle lotniczym, takich jak materiały kompozytowe z włókna węglowego, stopy tytanu itp., technologia obróbki CNC może zapewnić wydajne przetwarzanie tych materiałów w celu zapewnienia wydajności i jakości części. Według statystyk oczekuje się, że do 2026 roku wielkość światowego rynku materiałów lotniczych i kosmicznych osiągnie około 35 miliardów dolarów.
Warto wspomnieć, że technologia obróbki CNC wspiera także produkcję niestandardowych części w sektorze lotniczym. Ma to ogromne znaczenie przy produkcji statków kosmicznych w specjalnych scenariuszach. Według statystyk globalny rynek niestandardowych części lotniczych ma osiągnąć około 2,5 miliarda dolarów do 2026 roku.
Podsumowując, zastosowanie technologii obróbki CNCM w przemyśle lotniczym zapewnia silną gwarancję poprawy wydajności sprzętu lotniczego. W kontekście szybkiego rozwoju chińskiego przemysłu lotniczego i kosmicznego znaczenie technologii obróbki CNC jest oczywiste. Wraz z ciągłym rozwojem rynku lotniczego, perspektywy zastosowania technologii obróbki CNC w przemyśle lotniczym będą szersze. Mamy powody wierzyć, że technologia obróbki CNC będzie w dalszym ciągu przyczyniać się do dobrobytu przemysłu lotniczego.
W dziedzinie obróbki skrawaniem, po metodach procesu obróbki CNC i podziale procesów, główną treścią trasy procesu jest racjonalne uporządkowanie tych metod obróbki i kolejności przetwarzania. Ogólnie rzecz biorąc, obróbka CNC części mechanicznych obejmuje cięcie, obróbka cieplna oraz procesy pomocnicze takie jak obróbka powierzchni, czyszczenie i kontrola. Kolejność tych procesów wpływa bezpośrednio na jakość, wydajność produkcji i koszt części. Dlatego przy projektowaniu tras obróbki CNC należy rozsądnie ustalić kolejność cięcia, obróbki cieplnej i procesów pomocniczych oraz rozwiązać problem połączenia między nimi.
Oprócz podstawowych kroków wymienionych powyżej, przy opracowywaniu trasy obróbki CNC należy wziąć pod uwagę takie czynniki, jak wybór materiału, projekt osprzętu i wybór sprzętu. Wybór materiału jest bezpośrednio powiązany z końcową wydajnością części, różne materiały mają różne wymagania dotyczące parametrów cięcia; Konstrukcja osprzętu będzie miała wpływ na stabilność i dokładność części w procesie przetwarzania; Dobór sprzętu musi uwzględniać rodzaj obrabiarki odpowiedniej do jej potrzeb produkcyjnych, zgodnie z charakterystyką produktu.
1, metodę przetwarzania precyzyjnych części maszyn należy określić zgodnie z charakterystyką powierzchni. Na podstawie znajomości charakterystyki różnych metod przetwarzania, opanowania ekonomii przetwarzania i chropowatości powierzchni wybierana jest metoda, która może zapewnić jakość przetwarzania, wydajność produkcji i oszczędność.
2, wybierz odpowiednie odniesienie do pozycjonowania rysunku, zgodnie z zasadą surowego i dokładnego doboru odniesień, aby rozsądnie określić odniesienie do pozycjonowania każdego procesu.
3 , Opracowując przebieg procesu obróbki części, należy na podstawie analizy części podzielić etapy zgrubne, półdokładne i wykańczające części, oraz określić stopień koncentracji i rozproszenia procesu oraz rozsądnie ułożyć kolejność obróbki powierzchni. W przypadku skomplikowanych części można najpierw rozważyć kilka schematów, a po porównaniu i analizie można wybrać najbardziej rozsądny schemat przetwarzania.
4, określić naddatek na przetwarzanie oraz wielkość procesu i tolerancję każdego procesu.
5, wybierz obrabiarki i pracowników, klipsy, ilości, narzędzia skrawające. Dobór sprzętu mechanicznego powinien nie tylko zapewniać jakość obróbki, ale także być ekonomiczny i rozsądny. W warunkach produkcji masowej należy z reguły stosować zwykłe obrabiarki i specjalne przyrządy montażowe.
6, Określ wymagania techniczne i metody kontroli każdego głównego procesu. O określeniu wielkości cięcia i limitu czasu każdego procesu decyduje zwykle operator w przypadku pojedynczego zakładu produkcyjnego o małych partiach. Generalnie nie jest to określone w karcie procesu obróbki. Jednak w zakładach o produkcji średnioseryjnej i masowej, aby zapewnić racjonalność produkcji i równowagę rytmiczną, wymagane jest określenie wielkości cięcia i nie wolno jej dowolnie zmieniać.
Najpierw szorstko, potem dobrze
Dokładność obróbki jest stopniowo poprawiana zgodnie z kolejnością toczenia zgrubnego - toczenia półdokładnego - toczenia dokładnego. Tokarka zgrubna może w krótkim czasie usunąć większość naddatku na obróbkę powierzchni przedmiotu obrabianego, zwiększając w ten sposób szybkość usuwania metalu i spełniając wymóg jednorodności naddatku. Jeśli pozostała ilość po toczeniu zgrubnym nie spełnia wymagań wykończeniowych, konieczne jest zorganizowanie samochodu półwykańczającego do wykańczania. Dobry samochód musi upewnić się, że kontur części jest wycięty zgodnie z rozmiarem rysunku, aby zapewnić dokładność przetwarzania.
Najpierw podejdź, a potem daleko
W normalnych okolicznościach należy najpierw obrobić części znajdujące się blisko narzędzia, a następnie części znajdujące się daleko od narzędzia, aby skrócić odległość przemieszczania się narzędzia i skrócić czas pustego przejazdu. W procesie toczenia korzystne jest utrzymanie sztywności półfabrykatu lub półproduktu oraz poprawa warunków jego skrawania.
Zasada przecięcia wewnętrznego i zewnętrznego
W przypadku części, które mają do obróbki zarówno powierzchnię wewnętrzną (wnękę wewnętrzną), jak i powierzchnię zewnętrzną, ustalając kolejność obróbki, należy najpierw poddać obróbce zgrubnej powierzchnię wewnętrzną i zewnętrzną, a następnie wykończyć powierzchnie wewnętrzną i zewnętrzną. Nie może stanowić części powierzchni części (powierzchni zewnętrznej lub powierzchni wewnętrznej) po obróbce, a następnie obróbce innych powierzchni (powierzchni wewnętrznej lub powierzchni zewnętrznej).
Pierwsza zasada podstawowa
Priorytetowo należy traktować powierzchnię używaną jako odniesienie do wykończenia. Dzieje się tak dlatego, że im dokładniejsza powierzchnia odniesienia pozycjonowania, tym mniejszy błąd mocowania. Na przykład podczas obróbki części wału zwykle najpierw obrabiany jest otwór środkowy, a następnie powierzchnia zewnętrzna i czołowa są obrabiane z otworem środkowym jako podstawą precyzji.
Zasada pierwsza i druga
W pierwszej kolejności należy obrobić główną powierzchnię roboczą i powierzchnię montażową części, aby wcześnie wykryć nowoczesne defekty na głównej powierzchni półwyrobu. Powierzchnię wtórną można przeplatać, w pewnym stopniu nakładać na główną powierzchnię obrobioną, przed ostatecznym wykończeniem.
Zasada twarzy przed dziurą
Rozmiar zarysu płaskiego części pudełka i wspornika jest duży, a płaszczyzna jest zazwyczaj przetwarzana najpierw, a następnie przetwarzany jest otwór i inne rozmiary. Taki układ kolejności obróbki, z jednej strony z pozycjonowaniem obrabianej płaszczyzny, jest stabilny i niezawodny; Z drugiej strony łatwo jest obrobić otwór na obrobionej płaszczyźnie i może poprawić dokładność obróbki otworu, szczególnie podczas wiercenia, oś otworu nie jest łatwa do odchylenia.
Opracowując proces obróbki części, należy wybrać odpowiednią metodę obróbki, wyposażenie obrabiarki, zaciskowe narzędzia pomiarowe, półfabrykat i wymagania techniczne dla pracowników zgodnie z rodzajem produkcji części.
Sukces lub niepowodzenie operacji lotniczych zależy od dokładności, precyzji i jakości zastosowanych komponentów. Z tego powodu firmy z branży lotniczej wykorzystują zaawansowane techniki i procesy produkcyjne, aby mieć pewność, że ich komponenty w pełni odpowiadają ich potrzebom. Podczas gdy nowe metody produkcji, takie jak druk 3D, szybko zyskują popularność w branży, tradycyjne metody produkcji, takie jak obróbka skrawaniem, nadal odgrywają kluczową rolę w produkcji części i produktów do zastosowań lotniczych. Takie jak lepsze programy CAM, obrabiarki dostosowane do konkretnych zastosowań, ulepszone materiały i powłoki oraz ulepszona kontrola wiórów i tłumienie drgań – znacząco zmieniły sposób, w jaki firmy z branży lotniczej produkują krytyczne komponenty lotnicze. Jednak sam zaawansowany sprzęt nie wystarczy. Producenci muszą posiadać wiedzę specjalistyczną, aby sprostać wyzwaniom związanym z przetwarzaniem materiałów w przemyśle lotniczym.
Produkcja części lotniczych wymaga przede wszystkim określonych wymagań materiałowych. Części te zazwyczaj wymagają dużej wytrzymałości, małej gęstości, wysokiej stabilności termicznej i odporności na korozję, aby wytrzymać ekstremalne warunki pracy.
Typowe materiały lotnicze obejmują:
1. Stop aluminium o wysokiej wytrzymałości
Stopy aluminium o wysokiej wytrzymałości idealnie nadają się na części konstrukcyjne samolotów ze względu na ich niewielką wagę, odporność na korozję i łatwość obróbki. Na przykład stop aluminium 7075 jest szeroko stosowany w produkcji części lotniczych.
2. stopu tytanu
Stopy tytanu mają doskonały stosunek wytrzymałości do masy i są szeroko stosowane w częściach silników lotniczych, elementach kadłuba i śrubach.
3. Nadstop
Nadstopy zachowują wytrzymałość i stabilność w wysokich temperaturach i nadają się na dysze silników, łopatki turbin i inne części pracujące w wysokich temperaturach.
4. Materiał kompozytowy
Kompozyty z włókna węglowego dobrze sprawdzają się w zmniejszaniu masy konstrukcyjnej, zwiększaniu wytrzymałości i zmniejszaniu korozji i są powszechnie stosowane w produkcji osłon części lotniczych i komponentów statków kosmicznych.
Planowanie i projektowanie procesów
Przed rozpoczęciem przetwarzania wymagane jest planowanie i projektowanie procesów. Na tym etapie konieczne jest określenie ogólnego schematu przetwarzania zgodnie z wymaganiami projektowymi części i właściwościami materiału. Obejmuje to określenie procesu obróbki, wybór wyposażenia obrabiarki, dobór narzędzi itp. Jednocześnie konieczne jest wykonanie szczegółowego projektu procesu, obejmującego określenie profilu skrawania, głębokości skrawania, prędkości skrawania i innych parametrów.
Przygotowanie materiału i proces cięcia
W procesie obróbki części lotniczych pierwszą koniecznością jest przygotowanie materiałów roboczych. Zwykle materiały stosowane w częściach lotniczych obejmują stal stopową o wysokiej wytrzymałości, stal nierdzewną, stop aluminium i tak dalej. Po zakończeniu przygotowania materiału rozpoczyna się proces cięcia.
Etap ten polega na doborze obrabiarek, takich jak obrabiarki CNC, tokarki, frezarki itp., a także doborze narzędzi skrawających. Proces cięcia musi ściśle kontrolować prędkość posuwu, prędkość skrawania, głębokość skrawania i inne parametry narzędzia, aby zapewnić dokładność wymiarową i jakość powierzchni części.
Precyzyjny proces obróbki
Komponenty lotnicze są zwykle bardzo wymagające pod względem wielkości i jakości powierzchni, dlatego precyzyjna obróbka jest niezbędnym krokiem. Na tym etapie może być konieczne zastosowanie procesów o dużej precyzji, takich jak szlifowanie i elektroerozja. Celem procesu precyzyjnej obróbki jest dalsza poprawa dokładności wymiarowej i wykończenia powierzchni części, zapewniając ich niezawodność i stabilność w dziedzinie lotnictwa.
Obróbka cieplna
Niektóre części lotnicze mogą wymagać obróbki cieplnej po precyzyjnej obróbce. Proces obróbki cieplnej może poprawić twardość, wytrzymałość i odporność na korozję części. Obejmuje to metody obróbki cieplnej, takie jak hartowanie i odpuszczanie, które dobiera się zgodnie ze specyficznymi wymaganiami części.
Powłoka powierzchniowa
Aby poprawić odporność na zużycie i korozję części lotniczych, zwykle wymagane jest powlekanie powierzchni. Materiały powłokowe mogą obejmować węglik spiekany, powłokę ceramiczną itp. Powłoki powierzchniowe mogą nie tylko poprawić wydajność części, ale także przedłużyć ich żywotność.
Montaż i testowanie
Wykonaj montaż i kontrolę części. Na tym etapie części należy zmontować zgodnie z wymaganiami projektowymi, aby zapewnić dokładność dopasowania poszczególnych części. Jednocześnie wymagane są rygorystyczne testy, w tym badania wymiarowe, badania jakości powierzchni, badania składu materiału itp., aby upewnić się, że części spełniają standardy przemysłu lotniczego.
Ścisła kontrola jakości: Wymagania dotyczące kontroli jakości części lotniczych są bardzo rygorystyczne, a na każdym etapie przetwarzania części lotniczych wymagane są rygorystyczne testy i kontrola, aby zapewnić, że jakość części spełnia standardy.
Wymagania dotyczące dużej precyzji: Komponenty lotnicze zazwyczaj wymagają bardzo dużej dokładności, w tym dokładności wymiarowej, dokładności kształtu i jakości powierzchni. Dlatego w procesie przetwarzania należy stosować precyzyjne obrabiarki i narzędzia, aby zapewnić, że części spełniają wymagania projektowe.
Projekt konstrukcji złożonej: Części lotnicze często mają złożone konstrukcje i konieczne jest zastosowanie wieloosiowych obrabiarek CNC i innego sprzętu, aby sprostać potrzebom przetwarzania złożonych konstrukcji.
Odporność na wysoką temperaturę i wysoka wytrzymałość: części lotnicze zwykle pracują w trudnych warunkach, takich jak wysoka temperatura i wysokie ciśnienie, dlatego konieczne jest wybranie materiałów odpornych na wysoką temperaturę i wysoką wytrzymałość oraz przeprowadzenie odpowiedniego procesu obróbki cieplnej.
Ogólnie rzecz biorąc, obróbka części lotniczych jest procesem wysoce zaawansowanym technologicznie i wymagającym precyzji, który wymaga rygorystycznych procesów operacyjnych i zaawansowanego sprzętu do przetwarzania, aby zapewnić jakość i wydajność końcowych części spełniających rygorystyczne wymagania sektora lotniczego.
Obróbka części lotniczych stanowi wyzwanie, głównie w następujących obszarach:
Złożona geometria
Części lotnicze często mają złożoną geometrię, która wymaga bardzo precyzyjnej obróbki, aby spełnić wymagania projektowe.
Obróbka superstopów
Przetwarzanie nadstopów jest trudne i wymaga specjalnych narzędzi i procesów do obróbki tych twardych materiałów.
Duże części
Części statku kosmicznego są zwykle bardzo duże i wymagają dużych obrabiarek CNC i specjalnego sprzętu do obróbki.
Kontrola jakości
Przemysł lotniczy ma ogromne wymagania w zakresie jakości części i wymaga rygorystycznej kontroli jakości oraz inspekcji, aby mieć pewność, że każda część spełnia standardy.
W obróbce części lotniczych precyzja i niezawodność są kluczowe. Dogłębne zrozumienie i precyzyjna kontrola materiałów, procesów, precyzji i trudności w obróbce jest kluczem do produkcji wysokiej jakości części lotniczych.
1. Usterka Podczas wymiany noża manipulator utknął i nie może zmienić noża. Położenie manipulatora do wymiany noża jest przesunięte, a nóż ulega zmianie.2 Analiza i leczenie usterek
2.1 Zasada wymiany narzędzia Centrum obróbcze jest obrotowym magazynem narzędzi, a mechanizm zmiany narzędzia jest typu krzywkowego. Proces zmiany narzędzia wygląda następująco: (1) Wpisz m06t01, aby rozpocząć cykl zmiany i wyboru narzędzia.
(2) Wrzeciono zatrzyma się w zorientowanym punkcie zatrzymania wrzeciona, chłodziwo zatrzyma się, a oś Z przesunie się do pozycji zmiany narzędzia (drugi punkt odniesienia).(3) Wybierz narzędzie. Po tym jak NC skompiluje je do PLC zgodnie z poleceniem t, rozpocznij wybieranie narzędzia. Silnik magazynu narzędzi obraca się i obraca docelowy numer narzędzia do punktu zmiany narzędzia w magazynie narzędzi. Należy pamiętać, że polecenie t oznacza w tym momencie położenie tulei narzędziowej w magazynie narzędzi.(4) Silnik zmiany narzędzia napędza mechanizm krzywkowy w celu obrócenia o 90° od pozycji parkowania w celu uchwycenia narzędzia w efektywnej tulei narzędziowej i narzędzia w uchwycie wrzeciono. Jednocześnie wykrywa zmianę stanu wyłącznika zbliżeniowego mechanizmu krzywkowego, wyjście PMC wysyła polecenie poluzowania narzędzia, poluzowanie narzędzia w magazynie narzędzi i elektrozawór luzowania narzędzia wrzeciona są włączone, krzywka kontynuuje pracę obrócić, zjechać manipulatorem w dół, wcisnąć uchwyt narzędzia i przygotować się do wymiany. Jak pokazano na rysunku 1.
(5) Manipulator obraca się o 180° w celu wymiany narzędzia, krzywka kontynuuje ruch w górę, instaluje narzędzie we wrzecionie i instaluje narzędzie na oryginalnym wrzecionie w tulei narzędziowej w miejscu wymiany narzędzia w magazynie narzędzi. W tym samym czasie przełącznik wykrywający wysyła polecenie dokręcenia narzędzia do PMC, zawór elektromagnetyczny traci moc, uchwyt narzędzia z wałem zostaje zaciśnięty, sprężyna motylkowa cofa się, a narzędzie wrzecionowe zostaje zaciśnięte.(6) Zmień na manipulator, kontynuuj obrócić o 90° i przestać wykonywać zestaw działań związanych ze zmianą narzędzia. 2.2 analiza błędów
Zmień narzędzie na czwarty krok 2.1. Manipulator zmiany narzędzia jest zablokowany, a wrzeciono zostało poluzowane w celu przedmuchu, ale narzędzia nie można wyciągnąć. Odłącz zasilanie i ręcznie obróć silnik wymiany narzędzia. Po zakończeniu akcji zmiany narzędzia należy ręcznie załadować i rozładować narzędzie, akcja jest normalna, a problemy z narzędziem dokręcającym wrzeciono są wstępnie wyeliminowane. Po ponownym wykonaniu procesu wymiany narzędzia manipulator zostaje zablokowany i odpada pazur manipulatora na magazynie narzędzi. Po znalezieniu zmiany narzędzia manipulator instaluje narzędzie na wrzecionie i położenie jest kompensowane, jak pokazano na rysunku 2.
Po usunięciu narzędzia stwierdza się, że działanie jest normalne. Przyczyną tej sytuacji może być przesunięcie manipulatora względem wrzeciona lub odchylenie dokładności osi manipulatora względem osi wrzeciona, a niedokładne pozycjonowanie wrzeciona będzie również prowadzić do przesunięcia położenia zmiany narzędzia . Krok po kroku wdrażaj akcję wymiany narzędzia, sprawdź dokładne ustawienie wrzeciona i wyeliminuj usterkę spowodowaną niedokładnym pozycjonowaniem. Zgodnie z tabelą, mechaniczne położenie osiowe i odległość od środka obrotu ręki, tulei noża i wrzeciona są spójne, więc wyeliminowana jest również wada mechanicznego zakleszczenia mechanicznego telefonu komórkowego.
Ostatnio ta obrabiarka przetwarza głównie elementy ze stali nierdzewnej i innych materiałów, o dużej objętości skrawania i dużym obciążeniu. Działa pod ponownym cięciem przez długi czas. Stwierdzono, że manipulator nie jest luźny, a działanie teleskopowe pazura manipulatora jest elastyczne. Stwierdzono jednak, że blok regulacyjny manipulatora jest zużyty. Rozbiera się go i obserwuje się, że blok regulacyjny służy głównie do mocowania rękojeści narzędzia. Po ponownej naprawie i obróbce spróbuj ponownie. Przesunięcie znika w pozycji wrzeciona. Główną przyczyną tej usterki jest duże oddziaływanie manipulatora i częsta wymiana narzędzi, co skutkuje poluzowaniem i zużyciem pazura mocującego, jak pokazano na rysunku 3.
Kontakt: Ada Li
Tel: +86 17722440307
WhatsApp: +86 17722440307
E-mail: Ada@honscn.com
Dodaj: 4F, nr. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, Chiny