Honscn konzentriert sich auf professionelle CNC-Bearbeitungsdienstleistungen
seit 2003.
CNC-Bearbeitungsteile sind seit Jahren auf dem Markt und werden von Honscn Co., Ltd. hergestellt. Mit gutem Preis und guter Qualität sind sie führend in der Branche. Dieses Produkt ist die Lebensader des Unternehmens und nimmt den höchsten Standard für die Auswahl der Rohstoffe an. Der verbesserte Prozess und die strenge Qualitäts prüfung fördern die Entwicklung unseres Unternehmens. Moderner Fließbandbetrieb garantiert Produktqualität bei gleichzeitiger Sicherstellung der Produktionsgeschwindigkeit.
„Die Qualität von HONSCN Produkte ist wirklich erstaunlich!' Einige unserer Kunden machen solche Kommentare. Wir akzeptieren immer Komplimente von unseren Kunden aufgrund unserer qualitativ hochwertigen Produkte. Im Vergleich zu anderen ähnlichen Produkten achten wir mehr auf die Leistung und Details. Wir sind entschlossen, die Besten auf dem Markt zu sein, und tatsächlich sind unsere Produkte von Kunden weithin anerkannt und beliebt.
Bei Honscn können Kunden viele rücksichtsvolle Dienstleistungen in Anspruch nehmen – alle Produkte, einschließlich CNC-Bearbeitungsteilen, können nach Maß gefertigt werden. Profession eller OEM/ODM-Service ist verfügbar. Muster zum Testen werden ebenfalls bereitgestellt.
In den letzten Jahren hat die globale Luft- und Raumfahrtindustrie bemerkenswerte Erfolge erzielt, die nicht von der wichtigen Unterstützung der CNCM-Bearbeitungstechnologie getrennt werden können. Als effiziente und hochpräzise Bearbeitungsmethode wird die CNCM-Technologie zunehmend in der Luft- und Raumfahrtbranche eingesetzt, was eine starke Garantie für die Leistungsverbesserung von Luft- und Raumfahrtgeräten darstellt.
Internationalen Marktforschungsinstituten zufolge wird die Größe des globalen Luft- und Raumfahrtmarkts im nächsten Jahrzehnt stetig wachsen und bis 2028 voraussichtlich etwa 200 Milliarden US-Dollar erreichen. Auch in China wächst die Größe des Luft- und Raumfahrtmarkts weiter und wird bis 2026 voraussichtlich etwa 250 Milliarden Yuan erreichen. In diesem Zusammenhang ist der Einsatz der CNCM-Bearbeitungstechnologie in der Luft- und Raumfahrtindustrie besonders wichtig.
Es versteht sich, dass mit der CNC-Bearbeitungstechnologie im Luft- und Raumfahrtbereich genaue, präzise und komplexe Teile wie Flugzeugtriebwerke, Turbinenschaufeln, Flugzeugstrukturteile usw. hergestellt werden können. Diese Komponenten müssen eine hohe Genauigkeit und Stabilität aufweisen, um die Sicherheit und Leistung von Luft- und Raumfahrzeugen zu gewährleisten. Relevanten Daten zufolge wird der weltweite Markt für Luft- und Raumfahrtteile bis 2026 voraussichtlich etwa 12 Milliarden US-Dollar erreichen.
Darüber hinaus ist die hohe Effizienz der CNC-Bearbeitungstechnologie auch im Luft- und Raumfahrtbereich weit verbreitet. Im Montageprozess großer Luft- und Raumfahrzeuge wie Flugzeuge und Raketen kann die CNC-Bearbeitungstechnologie eine schnelle Massenproduktion erreichen und die Produktionseffizienz verbessern. Statistiken zufolge wird der weltweite Markt für Luft- und Raumfahrtmontage bis 2026 voraussichtlich etwa 60 Milliarden US-Dollar erreichen.
In Bezug auf die Materialien wurde die Kompatibilität der CNC-Bearbeitungstechnologie im Luft- und Raumfahrtbereich vollständig berücksichtigt. Mit der zunehmenden Anwendung neuer Materialien im Luft- und Raumfahrtbereich, wie z. B. Kohlefaserverbundwerkstoffen, Titanlegierungen usw., kann die CNC-Bearbeitungstechnologie die effiziente Verarbeitung dieser Materialien realisieren, um die Leistung und Qualität der Teile sicherzustellen. Statistiken zufolge wird der weltweite Markt für Luft- und Raumfahrtmaterialien bis 2026 voraussichtlich etwa 35 Milliarden US-Dollar erreichen.
Erwähnenswert ist, dass die CNC-Bearbeitungstechnologie auch die Herstellung kundenspezifischer Teile im Luft- und Raumfahrtsektor unterstützt. Dies ist für die Herstellung von Luft- und Raumfahrzeugen in speziellen Szenarien von großer Bedeutung. Statistiken zufolge wird der weltweite Markt für kundenspezifische Teile für die Luft- und Raumfahrt bis 2026 voraussichtlich etwa 2,5 Milliarden US-Dollar erreichen.
Zusammenfassend lässt sich sagen, dass der Einsatz der CNCM-Bearbeitungstechnologie in der Luft- und Raumfahrtindustrie eine starke Garantie für die Leistungsverbesserung von Luft- und Raumfahrtgeräten darstellt. Im Kontext der rasanten Entwicklung der chinesischen Luft- und Raumfahrtindustrie ist die Bedeutung der CNC-Bearbeitungstechnologie offensichtlich. Mit der kontinuierlichen Expansion des Luft- und Raumfahrtmarktes werden die Anwendungsaussichten der CNC-Bearbeitungstechnologie in der Luft- und Raumfahrtindustrie breiter. Wir haben Grund zu der Annahme, dass die CNC-Bearbeitungstechnologie weiterhin zum Wohlstand der Luft- und Raumfahrtindustrie beitragen wird.
Im Bereich der Bearbeitung besteht der Hauptinhalt der Prozessroute nach den CNC-Bearbeitungsprozessmethoden und der Prozessaufteilung darin, diese Bearbeitungsmethoden und die Bearbeitungsreihenfolge rational anzuordnen. Im Allgemeinen umfasst die CNC-Bearbeitung mechanischer Teile Schneiden, Wärmebehandlung und Hilfsprozesse wie Oberflächenbehandlung, Reinigung und Inspektion. Die Abfolge dieser Prozesse wirkt sich direkt auf die Qualität, Produktionseffizienz und Kosten der Teile aus. Daher sollte beim Entwerfen von CNC-Bearbeitungsrouten die Reihenfolge des Schneidens, der Wärmebehandlung und der Hilfsprozesse angemessen angeordnet und das Verbindungsproblem zwischen ihnen gelöst werden.
Zusätzlich zu den oben genannten grundlegenden Schritten müssen bei der Entwicklung einer CNC-Bearbeitungsroute Faktoren wie Materialauswahl, Vorrichtungsdesign und Geräteauswahl berücksichtigt werden. Die Materialauswahl steht in direktem Zusammenhang mit der endgültigen Leistung der Teile. Unterschiedliche Materialien stellen unterschiedliche Anforderungen an die Schnittparameter. Die Konstruktion der Vorrichtung beeinflusst die Stabilität und Genauigkeit der Teile im Bearbeitungsprozess. Bei der Auswahl der Ausrüstung muss anhand der Eigenschaften des Produkts der Typ der Werkzeugmaschine bestimmt werden, der für seine Produktionsanforderungen geeignet ist.
1, die Verarbeitungsmethode von Präzisionsmaschinenteilen sollte entsprechend den Eigenschaften der Oberfläche bestimmt werden. Auf der Grundlage der Kenntnis der Eigenschaften verschiedener Verarbeitungsmethoden, der Beherrschung der Verarbeitungsökonomie und der Oberflächenrauheit wird die Methode ausgewählt, die die Verarbeitungsqualität, Produktionseffizienz und Wirtschaftlichkeit gewährleisten kann.
2. Wählen Sie die entsprechende Positionierungsreferenz für die Zeichnung aus und bestimmen Sie die Positionierungsreferenz jedes Prozesses nach dem Prinzip der groben und feinen Referenzauswahl.
3 , Bei der Entwicklung der Bearbeitungsroute der Teile ist es notwendig, die Roh-, Halbfein- und Endstufen der Teile auf der Grundlage der Analyse der Teile zu unterteilen. und bestimmen Sie den Grad der Konzentration und Streuung des Prozesses und ordnen Sie die Bearbeitungsreihenfolge der Oberflächen angemessen an. Bei komplexen Teilen können zunächst mehrere Schemata in Betracht gezogen und nach Vergleich und Analyse das sinnvollste Bearbeitungsschema ausgewählt werden.
4. Bestimmen Sie die Verarbeitungszugabe sowie die Prozessgröße und -toleranz jedes Prozesses.
5. Wählen Sie Werkzeugmaschinen und Arbeiter, Clips, Mengen und Schneidwerkzeuge aus. Die Auswahl der maschinellen Ausrüstung sollte nicht nur die Qualität der Verarbeitung gewährleisten, sondern auch wirtschaftlich und sinnvoll sein. Unter den Bedingungen der Massenproduktion sollten im Allgemeinen allgemeine Werkzeugmaschinen und spezielle Vorrichtungen verwendet werden.
6. Bestimmen Sie die technischen Anforderungen und Inspektionsmethoden für jeden wichtigen Prozess. Die Bestimmung der Schnittmenge und des Zeitaufwands für jeden Prozess wird normalerweise vom Betreiber für eine einzelne Kleinserienproduktionsanlage festgelegt. Es wird im Allgemeinen nicht in der Bearbeitungsprozesskarte angegeben. Um jedoch die Rationalität der Produktion und die Ausgewogenheit des Rhythmus zu gewährleisten, ist es in mittelgroßen Chargen- und Massenproduktionsanlagen erforderlich, dass die Schnittmenge festgelegt wird und nicht nach Belieben geändert werden darf.
Erst grob und dann fein
Die Bearbeitungsgenauigkeit wird in der Reihenfolge Grobdrehen – Halbfeindrehen – Feindrehen schrittweise verbessert. Die Schruppdrehmaschine kann in kurzer Zeit den größten Teil des Bearbeitungsaufmaßes der Werkstückoberfläche entfernen, wodurch die Metallabtragsrate erhöht und die Anforderung an die Gleichmäßigkeit des Aufmaßes erfüllt wird. Wenn die nach dem Schruppdrehen verbleibende Restmenge nicht den Endbearbeitungsanforderungen entspricht, muss für die Endbearbeitung ein Vorbearbeitungswagen bereitgestellt werden. Das feine Auto muss sicherstellen, dass der Umriss des Teils entsprechend der Zeichnungsgröße geschnitten wird, um die Verarbeitungsgenauigkeit sicherzustellen.
Erst annähern und dann weit
Unter normalen Umständen sollten zuerst die Teile in der Nähe des Werkzeugs und dann die Teile, die weit vom Werkzeug entfernt sind, bearbeitet werden, um die Bewegungsstrecke des Werkzeugs zu verkürzen und die Leerfahrzeit zu verkürzen. Beim Drehen ist es von Vorteil, die Steifigkeit des Rohlings oder Halbzeugs aufrechtzuerhalten und seine Schnittbedingungen zu verbessern.
Das Prinzip der inneren und äußeren Schnittmenge
Bei Teilen, die sowohl eine Innenfläche (Innenhohlraum) als auch eine zu bearbeitende Außenfläche haben, sollten bei der Festlegung der Bearbeitungsreihenfolge zunächst die Innen- und Außenflächen aufgeraut und anschließend die Innen- und Außenflächen geschlichtet werden. Darf nach der Bearbeitung nicht Teil der Oberfläche des Teils (Außenfläche oder Innenfläche) sein, danach werden andere Flächen (Innenfläche oder Außenfläche) bearbeitet.
Base-First-Prinzip
Der Oberfläche, die als Endbearbeitungsreferenz dient, sollte Vorrang eingeräumt werden. Denn je genauer die Oberfläche der Positionierungsreferenz ist, desto kleiner ist der Spannfehler. Beispielsweise wird bei der Bearbeitung von Wellenteilen normalerweise zuerst das Mittelloch bearbeitet, und dann werden die Außenfläche und die Stirnfläche mit dem Mittelloch als Präzisionsbasis bearbeitet.
Das Prinzip des ersten und des zweiten
Die Hauptarbeitsfläche und die Montagegrundfläche der Teile sollten zuerst bearbeitet werden, um moderne Mängel auf der Hauptfläche im Rohling frühzeitig herauszufinden. Die Sekundärfläche kann vor der Endbearbeitung bis zu einem gewissen Grad auf der bearbeiteten Hauptfläche platziert werden.
Das Prinzip des Gesichts vor dem Loch
Die ebene Umrissgröße der Kasten- und Halterungsteile ist groß, und die Ebene wird im Allgemeinen zuerst bearbeitet, und dann werden das Loch und andere Größen bearbeitet. Diese Anordnung der Bearbeitungssequenz ist einerseits mit der Positionierung der bearbeiteten Ebene stabil und zuverlässig; Andererseits ist es einfach, das Loch auf der bearbeiteten Ebene zu bearbeiten, und kann die Bearbeitungsgenauigkeit des Lochs verbessern, insbesondere beim Bohren, da die Achse des Lochs nicht leicht abweichen kann.
Bei der Entwicklung des Bearbeitungsprozesses von Teilen ist es notwendig, entsprechend der Produktionsart der Teile das geeignete Bearbeitungsverfahren, die Werkzeugmaschinenausrüstung, die Spannmesswerkzeuge, den Rohling und die technischen Anforderungen für die Arbeiter auszuwählen.
Der Erfolg oder Misserfolg von Luft- und Raumfahrteinsätzen hängt von der Genauigkeit, Präzision und Qualität der verwendeten Komponenten ab. Aus diesem Grund nutzen Luft- und Raumfahrtunternehmen fortschrittliche Fertigungstechniken und -prozesse, um sicherzustellen, dass ihre Komponenten ihren Anforderungen vollständig entsprechen. Während neue Fertigungsmethoden wie der 3D-Druck in der Branche immer beliebter werden, spielen traditionelle Fertigungsmethoden wie die maschinelle Bearbeitung weiterhin eine Schlüsselrolle bei der Herstellung von Teilen und Produkten für Luft- und Raumfahrtanwendungen. B. bessere CAM-Programme, anwendungsspezifische Werkzeugmaschinen, verbesserte Materialien und Beschichtungen sowie eine verbesserte Spankontrolle und Vibrationsdämpfung – haben die Art und Weise, wie Luft- und Raumfahrtunternehmen wichtige Luft- und Raumfahrtkomponenten herstellen, erheblich verändert. Allerdings reicht eine ausgefeilte Ausstattung allein nicht aus. Hersteller müssen über das Fachwissen verfügen, um die Herausforderungen der Materialverarbeitung in der Luft- und Raumfahrtindustrie zu meistern.
Die Herstellung von Luft- und Raumfahrtteilen erfordert zunächst spezifische Materialanforderungen. Diese Teile erfordern typischerweise eine hohe Festigkeit, geringe Dichte, hohe thermische Stabilität und Korrosionsbeständigkeit, um extremen Betriebsbedingungen standzuhalten.
Zu den gängigen Luft- und Raumfahrtmaterialien gehören::
1. Hochfeste Aluminiumlegierung
Hochfeste Aluminiumlegierungen eignen sich aufgrund ihres geringen Gewichts, ihrer Korrosionsbeständigkeit und ihrer einfachen Verarbeitung ideal für Flugzeugstrukturteile. Beispielsweise wird die Aluminiumlegierung 7075 häufig bei der Herstellung von Teilen für die Luft- und Raumfahrt verwendet.
2. Titanlegierung
Titanlegierungen weisen ein hervorragendes Festigkeits-Gewichts-Verhältnis auf und werden häufig in Flugzeugtriebwerksteilen, Rumpfkomponenten und Schrauben verwendet.
3. Superlegierung
Superlegierungen behalten ihre Festigkeit und Stabilität bei hohen Temperaturen und eignen sich für Triebwerksdüsen, Turbinenschaufeln und andere Hochtemperaturteile.
4. Verbundwerkstoff
Kohlefaserverbundstoffe leisten gute Dienste bei der Reduzierung des Strukturgewichts, der Erhöhung der Festigkeit und der Reduzierung von Korrosion und werden häufig bei der Herstellung von Gehäusen für Luft- und Raumfahrtteile und Raumfahrzeugkomponenten verwendet.
Prozessplanung und -design
Vor der Verarbeitung sind Prozessplanung und -design erforderlich. In dieser Phase muss das Gesamtverarbeitungsschema entsprechend den Designanforderungen der Teile und Materialeigenschaften festgelegt werden. Dazu gehört die Festlegung des Bearbeitungsprozesses, die Auswahl der Werkzeugmaschinenausrüstung, die Auswahl der Werkzeuge usw. Gleichzeitig ist eine detaillierte Prozessgestaltung erforderlich, einschließlich der Bestimmung von Schnittprofil, Schnitttiefe, Schnittgeschwindigkeit und anderen Parametern.
Materialvorbereitung und Schneidprozess
Bei der Bearbeitung von Luft- und Raumfahrtteilen müssen zunächst Arbeitsmaterialien vorbereitet werden. Zu den in Luftfahrtteilen verwendeten Materialien gehören üblicherweise hochfester legierter Stahl, Edelstahl, Aluminiumlegierungen usw. Nachdem die Materialvorbereitung abgeschlossen ist, wird mit dem Schneidvorgang begonnen.
Dieser Schritt umfasst die Auswahl von Werkzeugmaschinen wie CNC-Werkzeugmaschinen, Drehmaschinen, Fräsmaschinen usw. sowie die Auswahl von Schneidwerkzeugen. Der Schneidprozess muss die Vorschubgeschwindigkeit, Schnittgeschwindigkeit, Schnitttiefe und andere Parameter des Werkzeugs streng kontrollieren, um die Maßgenauigkeit und Oberflächenqualität der Teile sicherzustellen.
Präzisionsbearbeitungsprozess
Komponenten in der Luft- und Raumfahrtindustrie sind in der Regel sehr anspruchsvoll in Bezug auf Größe und Oberflächenqualität, daher ist eine präzise Bearbeitung ein unverzichtbarer Schritt. In dieser Phase kann es erforderlich sein, hochpräzise Verfahren wie Schleifen und Erodieren einzusetzen. Ziel des Präzisionsbearbeitungsprozesses ist es, die Maßgenauigkeit und Oberflächenbeschaffenheit der Teile weiter zu verbessern und so deren Zuverlässigkeit und Stabilität im Luftfahrtbereich sicherzustellen.
Wärme behandlung
Einige Luft- und Raumfahrtteile erfordern möglicherweise nach der Präzisionsbearbeitung eine Wärmebehandlung. Durch den Wärmebehandlungsprozess können die Härte, Festigkeit und Korrosionsbeständigkeit der Teile verbessert werden. Dazu gehören Wärmebehandlungsmethoden wie Abschrecken und Anlassen, die entsprechend den spezifischen Anforderungen der Teile ausgewählt werden.
Oberflächen beschichtung
Um die Verschleißfestigkeit und Korrosionsbeständigkeit von Luftfahrtteilen zu verbessern, ist in der Regel eine Oberflächenbeschichtung erforderlich. Zu den Beschichtungsmaterialien können Hartmetall, Keramikbeschichtungen usw. gehören. Oberflächenbeschichtungen können nicht nur die Leistung von Teilen verbessern, sondern auch deren Lebensdauer verlängern.
Montage und Prüfung
Führen Sie die Montage und Inspektion der Teile durch. In dieser Phase müssen die Teile gemäß den Konstruktionsanforderungen zusammengebaut werden, um die Genauigkeit der Übereinstimmung zwischen den verschiedenen Teilen sicherzustellen. Gleichzeitig sind strenge Tests erforderlich, darunter Dimensionstests, Tests der Oberflächenqualität, Tests der Materialzusammensetzung usw., um sicherzustellen, dass die Teile den Standards der Luftfahrtindustrie entsprechen.
Strenge Qualitätskontrolle: Die Anforderungen an die Qualitätskontrolle von Luftfahrtteilen sind sehr streng und in jeder Verarbeitungsphase von Luftfahrtteilen sind strenge Tests und Kontrollen erforderlich, um sicherzustellen, dass die Qualität der Teile den Standards entspricht.
Hohe Präzisionsanforderungen: Luft- und Raumfahrtkomponenten erfordern typischerweise eine sehr hohe Genauigkeit, einschließlich Maßhaltigkeit, Formgenauigkeit und Oberflächenqualität. Daher müssen im Bearbeitungsprozess hochpräzise Werkzeugmaschinen und Werkzeuge eingesetzt werden, um sicherzustellen, dass die Teile den Designanforderungen entsprechen.
Komplexes Strukturdesign: Luftfahrtteile haben oft komplexe Strukturen, und es ist notwendig, mehrachsige CNC-Werkzeugmaschinen und andere Geräte zu verwenden, um den Bearbeitungsanforderungen komplexer Strukturen gerecht zu werden.
Hohe Temperaturbeständigkeit und hohe Festigkeit: Luftfahrtteile arbeiten normalerweise in rauen Umgebungen wie hohen Temperaturen und hohem Druck. Daher ist es notwendig, Materialien mit hoher Temperaturbeständigkeit und hoher Festigkeit zu wählen und den entsprechenden Wärmebehandlungsprozess durchzuführen.
Insgesamt handelt es sich bei der Teilebearbeitung für die Luft- und Raumfahrtindustrie um einen äußerst technologieintensiven und präzisionsintensiven Prozess, der strenge Betriebsabläufe und fortschrittliche Verarbeitungsausrüstung erfordert, um sicherzustellen, dass die Qualität und Leistung der Endteile den strengen Anforderungen des Luftfahrtsektors gerecht wird.
Die Bearbeitung von Luft- und Raumfahrtteilen stellt eine Herausforderung dar, vor allem in den folgenden Bereichen:
Komplexe Geometrie
Luft- und Raumfahrtteile weisen häufig komplexe Geometrien auf, die eine hochpräzise Bearbeitung erfordern, um Designanforderungen zu erfüllen.
Superlegierungsverarbeitung
Die Verarbeitung von Superlegierungen ist schwierig und erfordert spezielle Werkzeuge und Verfahren zur Handhabung dieser harten Materialien.
Große Teile
Die Teile des Raumfahrzeugs sind in der Regel sehr groß und erfordern große CNC-Werkzeugmaschinen und spezielle Bearbeitungsgeräte.
Qualitäts kontrolle
Die Luft- und Raumfahrtindustrie stellt höchste Ansprüche an die Teilequalität und erfordert strenge Qualitätskontrollen und Inspektionen, um sicherzustellen, dass jedes Teil den Standards entspricht.
Bei der Teilebearbeitung in der Luft- und Raumfahrtindustrie kommt es auf Präzision und Zuverlässigkeit an. Ein tiefes Verständnis und eine genaue Kontrolle von Materialien, Prozessen, Präzision und Bearbeitungsschwierigkeiten sind der Schlüssel zur Herstellung hochwertiger Teile für die Luft- und Raumfahrt.
Kontakt: Ada Li
Tel:86 17722440307
WhatsApp: +86 17722440307
Email: Ada@honscn.com
Hinzufügen: 4F, Nr. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China