Детали вала штифтов - это продукт, сочетающий в себе передовые технологии и неустанные усилия людей. Honscn Co.,Ltd гордится тем, что является единственным поставщиком. Выбирая отличное сырье и используя передовые технологии, мы делаем продукт стабильным и долговечным. Профессиональные и опытные сотрудники работают, чтобы нести ответственность за проверку качества продукта. Он проверен на долгий срок службы и гарантию качества.
Поскольку социальные сети стали ценной платформой для маркетинга, HONSCN уделяет все больше внимания построению репутации в Интернете. Уделяя первостепенное внимание контролю качества, мы создаем продукты с более стабильными характеристиками и значительно снижаем скорость ремонта. Продукты хорошо воспринимаются покупателями, которые также являются активными пользователями социальных сетей. Их положительные отзывы помогают нашим продуктам распространяться по Интернету.
Мы предоставляем широкий спектр услуг клиентам по покупке деталей штифтов и подобной продукции в Honscn, включая техническую поддержку и помощь в составлении спецификаций. Мы выделяемся как лидер в комплексной поддержке клиентов.
Shenzhen Honscn является профессиональным производителем деталей станков с ЧПУ, деталей токарных станков и винтовых креплений. Мы предлагаем услуги OEM и ODM с любыми сопутствующими продуктами для клиентов. У нас есть профессиональная команда разработчиков продукции и инженеров, а также профессиональная команда контроля качества, наши отделы продаж, документации и логистики могут выполнить требования по представлению документов при различных способах оплаты и различных видах транспортировки.
• Мы можем сделать официальные чертежи по запросу клиента, или клиент предоставит нам свои чертежи, чтобы указать цену и сделать образцы для утверждения.
• После получения образцов клиенты проведут проверку материала, размера и допуска. Если клиенту необходимо изменить размер или материал, мы можем организовать второй образец для утверждения. Пока клиент не одобрит образцы, мы подтвердим большой заказ.
Между тем, мы проверим его перед отправкой образцов. И все испытания проводятся строго в соответствии с отраслевыми стандартами.
• Если образец подтвержден, клиент должен предоставить сертификат заводских испытаний этого продукта, соответствующий стандартам ЕС, таким как CE, RoHS, REACH, перед размещением заказа. Вся наша продукция соответствует всем европейским сертификатам, таким как CE, RoHS, REACH и т. д., и все они подготовили стандартные документы для проверки клиентов.
• Мы начинаем готовить материалы для заказа, когда клиент подтверждает все детали, такие как материал, размер, допуск, качество поверхности и другие детали окончательного образца.
После упаковки, такой как количество, этикетка, отметка доставки и т. д. предоставляются клиентом, мы начинаем организовать массовое производство. После того, как все товары будут готовы, отправьте фотографии клиенту на утверждение. Мы обещаем, что упаковка такая же, как просил клиент, массовая продукция точно такая же, как окончательные образцы. На следующих фотографиях груза степень прохождения сторонней проверки нашей компании составляет 100%.
• Получив отгрузку всего заказа, клиент немедленно выставил его на рынок и быстро стал самым популярным продуктом на рынке, будь то традиционный рынок, рынок высококачественных профессиональных крепежных изделий или онлайн-продажи на Amazon. Мы всегда уделяем большое внимание качеству нашей продукции, которое признается клиентами и постоянно покупается повторно.
Сейчас во многих отраслях прецизионных деталей используется обработка с ЧПУ, но после завершения обработки с ЧПУ поверхность многих изделий все еще остается относительно шероховатой, на этот раз вам необходимо провести вторичную чистовую обработку поверхности.
Прежде всего, обработка поверхности подходит не для всех продуктов обработки с ЧПУ, некоторые продукты можно использовать непосредственно после обработки, а некоторые требуют ручной полировки, гальваники, окисления, резьбы по радию, трафаретной печати, порошкового напыления и других специальных процессов. Вот некоторые вещи, которые вам следует знать об обработке поверхности.
1, повысить точность продукта ; После завершения обработки изделия некоторые изделия имеют шероховатую поверхность и оставляют большие остаточные напряжения, что снижает точность изделия и влияет на точность соответствия деталей. В этом случае требуется обработка поверхности изделия.
2, обеспечить износостойкость изделия ; Если сценарии обычного использования деталей взаимодействуют с другими деталями, длительное использование приведет к увеличению износа деталей, что также требует обработки поверхности изделия для продления срока службы деталей.
3, повысить коррозионную стойкость изделия ; Детали, эксплуатируемые длительное время в местах с высокой коррозионной активностью, требуют специальной обработки поверхности, требующей полировки и напыления антикоррозионных материалов. Улучшите коррозионную стойкость и срок службы изделия.
Вышеупомянутые три пункта являются необходимыми условиями для обработки поверхности после прецизионной обработки деталей с ЧПУ, и ниже будут представлены несколько методов обработки поверхности.
01. Что такое гальваника?
Гальваника относится к технологии поверхностной инженерии, при которой на поверхности подложки путем электролиза в солевом растворе, содержащем металлизированную группу, получают твердую металлическую пленку, при этом металлизированная группа выступает в качестве катода, а металлизированная группа или другой инертный проводник - в качестве анода под действие постоянного тока.
02. Почему гальваника?
Целью гальванотехники является улучшить внешний вид материала, придав поверхности материала разнообразные физические и химические свойства , такие как коррозионная стойкость, декоративные, износостойкость, пайка и электрические, магнитные, оптические свойства.
03. Каковы виды и области применения гальваники?
1, оцинкованный
Оцинкованный слой имеет высокую чистоту и представляет собой анодное покрытие. Слой цинка играет механическую и электрохимическую защитную роль на стальной матрице.
Таким образом, оцинкованный слой широко используется в машиностроении, оборудовании, электронике, инструментах, легкой промышленности и других аспектах и является одним из наиболее широко используемых видов покрытия.
2. Меднение
Медное покрытие представляет собой катодное полярное покрытие, которое может играть только роль механической защиты основного металла. Слой меднения обычно используется не только как защитно-декоративное покрытие, а как нижний или средний слой покрытия для улучшения адгезии между поверхностным покрытием и основным металлом.
В области электроники, например, меднение сквозных отверстий на печатных платах, а также в аппаратной технике, ремеслах, отделке мебели и других областях.
3. Никелирование
Слой никелирования представляет собой защитный слой отрицательной полярности, оказывающий только механическое защитное воздействие на основной металл. Помимо непосредственного использования в некоторых медицинских устройствах и корпусах аккумуляторов, никелированный слой часто используется в качестве нижнего или среднего промежуточного слоя, который широко используется в повседневном оборудовании, легкой промышленности, бытовой технике, машиностроении и других отраслях.
4. Хромирование
Хромированный слой представляет собой покрытие отрицательной полярности, которое играет только роль механической защиты. Декоративное хромирование, нижний слой обычно полируется или наносится гальваническим светлым покрытием.
Широко используется в приборах, счетчиках, бытовой технике, бытовой технике, самолетах, автомобилях, мотоциклах, велосипедах и других открытых частях. Функциональное хромирование включает твердое хромирование, пористое хромирование, черный хром, опаловый хром и так далее.
Слой твердого хрома в основном используется для различных измерительных суппортов, манометров, режущих инструментов и различных типов валов, слой хрома со свободными отверстиями в основном используется для разрушения поршня в полости цилиндра; Черный хромовый слой используется для деталей, которым необходима матовая поверхность и износостойкость, например, авиационные приборы, оптические приборы, фототехника и т. д. Опалесцирующий хром в основном используется в различных измерительных инструментах.
5. Лужение
По сравнению со стальной подложкой олово представляет собой покрытие с отрицательной полярностью, а по сравнению с медной подложкой — анодное покрытие. Утончающий слой в основном используется в качестве защитного слоя тонкой пластины в консервной промышленности, а большая часть оболочки ковкого железа изготавливается из лужения железных пластин. Еще одно важное применение оловянных покрытий — в электронной и энергетической промышленности.
6, покрытие из сплава
В растворе два или более иона металла совместно осаждаются на катоде, образуя процесс равномерного тонкого покрытия, называемый гальваническим покрытием.
Гальваническое покрытие сплавом превосходит гальваническое покрытие одного металла по плотности кристаллов, пористости, цвету, твердости, коррозионной стойкости, износостойкости, магнитной проводимости, износостойкости и устойчивости к высоким температурам.
Существует более 240 видов гальванических сплавов, но реально в производстве используется менее 40 видов. Обычно его делят на три категории: защитное покрытие сплава, декоративное покрытие сплава и функциональное покрытие сплава .
Широко используется в авиации, аэрокосмической, навигационной, автомобильной, горнодобывающей, военной, измерительной технике, визуальном оборудовании, посуде, музыкальных инструментах и других отраслях промышленности.
В дополнение к вышесказанному, существуют другие химические покрытия, композитные покрытия, неметаллические покрытия, позолота, посеребрение и так далее.
Поверхность изделий, обработанных с помощью станков с ЧПУ или 3D-печати, иногда бывает шероховатой, а требования к поверхности изделий высоки, поэтому их необходимо полировать.
Под полировкой подразумевается использование механического, химического или электрохимического воздействия для уменьшения шероховатости поверхности заготовки с целью получения блестящей, плоской поверхности.
Полировка может не повысить размерную точность или геометрическую точность заготовки, а с целью получения гладкой поверхности или зеркального блеска, а иногда и для устранения блеска (потускнения).
Ниже описаны несколько распространенных методов полировки.:
01. Механическая полировка
Механическая полировка заключается в резке, пластической деформации поверхности материала для удаления полированной выпуклой и гладкой поверхности методом полировки, обычном использовании полосы точильного камня, шерстяного круга, наждачной бумаги и т. д., преимущественно ручное управление Требования к качеству поверхности могут быть использованы для метода сверхтонкой полировки.
Суперфинишная полировка – это использование специальных шлифовальных инструментов, в полировочной жидкости, содержащей абразив, плотно прижимаемых к обрабатываемой поверхности заготовки, для высокоскоростного вращения. Этот метод часто используется при изготовлении форм для оптических линз.
02. Химическая полировка
Химическая полировка заключается в растворении в химической среде микроскопической выступающей части поверхности материала преимущественно, чем вогнутой части, с целью получения гладкой поверхности.
Основным преимуществом этого метода является то, что он не требует сложного оборудования, позволяет полировать детали сложной формы и одновременно с высокой эффективностью полировать множество деталей.
Основной проблемой химической полировки является приготовление полирующей жидкости.
03. Электролитическая полировка
Основной принцип электролитической полировки такой же, как и химической полировки, то есть гладкая поверхность достигается за счет избирательного растворения мелких выступающих частей на поверхности материала.
По сравнению с химической полировкой, эффект катодной реакции может быть устранен и эффект лучше.
04. Ультразвуковая полировка
Заготовка помещается в абразивную суспензию и помещается вместе в ультразвуковое поле, а абразив шлифуется и полируется на поверхности заготовки за счет колебаний ультразвуковой волны.
Макроскопическая сила ультразвуковой обработки невелика и не вызывает деформации заготовки, но изготовление и установка оснастки сложнее.
05. Жидкая полировка
Жидкостная полировка основана на высокоскоростном потоке жидкости и абразивных частицах, которые она несет, которые омывают поверхность заготовки для достижения цели полировки.
Общие методы:: абразивно-струйная обработка, жидкостно-струйная обработка, гидродинамическое шлифование И так далее. Гидродинамическое шлифование приводится в действие гидравлическим давлением, заставляющим жидкую среду, несущую абразивные частицы, течь через поверхность заготовки с высокой скоростью.
Среда в основном состоит из специальных составов, обладающих хорошей текучестью при низком давлении и смешанных с абразивами, которыми может быть порошок карбида кремния.
06. Магнитная шлифовка-полировка
Магнитное шлифование и полирование – это использование магнитного абразива под действием магнитного поля для формирования абразивной щетки, шлифующей заготовку.
Этот метод имеет преимущества высокой эффективности обработки, хорошего качества, простоты контроля условий обработки и хороших условий труда.
Выше приведены 6 распространенных процессов полировки.
HONSCN Компания Precision уже 20 лет является профессиональным производителем станков с ЧПУ. Сотрудничество с более чем 1000 предприятиями, глубокое накопление технологий, команда старших технических специалистов, добро пожаловать на консультацию по индивидуальной обработке! Обслуживание клиентов
Основные этапы проектирования пластиковых деталей. Пластиковые детали проектируются на основе промышленного моделирования. Сначала необходимо определить наличие аналогичных изделий для сравнения, а затем провести детальную функциональную декомпозицию изделий и деталей для определения основных технологических проблем, таких как изгиб деталей, толщина стенок, уклон при выемке из формы, переходная обработка между деталями, обработка соединений и прочностная обработка деталей. 1. Аналогичные материалы
Перед проектированием сначала изучите аналогичные продукты компании и конкурентов, какие проблемы и недостатки возникли в исходных продуктах, и обратитесь к существующей зрелой структуре, чтобы избежать проблемных структурных форм. 2. Определите дисконтирование деталей, переход, соединение и обработку зазоров между деталями. Поймите стиль моделирования из чертежа моделирования и чертежа эффектов, взаимодействуйте с функциональным разложением продукта, определите количество деталей (различные состояния поверхности либо делятся на разные части, либо должна быть переобработка между разными поверхностями), определите переобработку между поверхностями деталей и определите режим соединения и зазор посадки между деталями.
3. Определение прочности детали и прочности соединения. Определите толщину стенки корпуса детали в соответствии с размерами изделия. Прочность самой детали определяется толщиной стенки пластиковой детали, формой конструкции (пластиковая деталь в форме плоской пластины имеет наихудшую прочность), наличием ребра жесткости и ребра жесткости. При определении единичной прочности деталей необходимо определить прочность соединения между ними. Методы изменения прочности соединения включают: добавление винтовой колонны, добавление упора, добавление положения пряжки и добавление усиливающей кости сверху и снизу. 4. Определение уклона выемки из формы.
Наклон извлечения из формы должен быть всесторонне определен в зависимости от материала (ПП, ПЭ силикагель и резина могут быть извлечены из формы принудительно), состояния поверхности (наклон декоративного зерна должен быть больше, чем у гладкой поверхности, а наклон протравленной поверхности должен быть на 0,5 градуса больше, чем требуется шаблоном, насколько это возможно, чтобы гарантировать, что протравленная поверхность не будет повреждена и повысить выход продукции), прозрачности или нет, определяет наклон извлечения из формы деталей (прозрачный наклон должен быть больше). Типы материалов, рекомендуемые различными сериями продукции компании Обработка поверхности пластиковых деталей
Выбор толщины стенки пластиковых деталей. Для пластиковых деталей требуется равномерность толщины стенки, а неравномерная толщина стенки будет иметь следы усадки. Необходимо, чтобы отношение толщины ребра жесткости к толщине основной стенки было менее 0,4, а максимальное отношение не превышало 0,6. Наклон при выемке пластиковых деталей из формы.
При создании стереоскопического чертежа, где важны внешний вид и сборка, необходимо прорисовать наклон, который, как правило, не прорисовывается для ребер жесткости. Наклон при выемке пластиковых деталей определяется материалом, состоянием отделки поверхности и прозрачностью деталей. Наклон при выемке твердого пластика больше, чем мягкого. Чем выше деталь, тем глубже отверстие и тем меньше наклон. Рекомендуемый наклон при выемке для различных материалов.
Числовые значения различной точности в различных размерных диапазонах. Точность размеров пластиковых деталей. Как правило, точность пластиковых деталей невысока. На практике мы в основном проверяем сборочные размеры, нанося на чертеж габаритные размеры, сборочные размеры и другие размеры, требующие контроля.
На практике мы в первую очередь обращаем внимание на согласованность размеров. Края верхней и нижней крышек должны быть совмещены. Экономическая точность различных материалов. Числовые значения различной точности в различных размерных диапазонах.
Шероховатость поверхности пластика1) Шероховатость протравленной поверхности оценить невозможно. Если качество поверхности пластика особенно высокое, обведите этот диапазон и обозначьте состояние поверхности как зеркальное.2) Поверхность пластиковых деталей, как правило, гладкая и блестящая, а шероховатость поверхности обычно составляет ra2,5 ± 0,2 мкм.
3) Шероховатость поверхности пластика в основном зависит от шероховатости поверхности полости пресс-формы. Шероховатость поверхности пресс-формы должна быть на один-два уровня выше, чем у пластиковых деталей. Поверхность пресс-формы может достигать шероховатости ra0,05 при ультразвуковой и электролитической полировке. Величина галтели при литье под давлением определяется толщиной прилегающей стенки, которая обычно составляет 0,5–1,5 толщины стенки, но не менее 0,5 мм.
Положение поверхности разъема должно быть тщательно выбрано. На поверхности разъема имеется галтель, а часть галтели должна находиться с другой стороны штампа. Это трудно сделать, и на галтеле остаются тонкие следы. Тем не менее, галтель требуется, когда требуется защита от порезов. Проблема ребра жесткости Процесс литья под давлением аналогичен процессу литья. Неравномерность толщины стенки приведет к усадочным дефектам. Как правило, толщина стенки арматуры составляет 0,4 от толщины основного тела, а максимальная - не более 0,6 от толщины. Расстояние между стержнями больше 4Т, а высота стержней меньше 3Т. В методе повышения прочности деталей ее, как правило, армируют без увеличения толщины стенки.
Арматура винтовой колонны должна быть не менее чем на 1,0 мм ниже торцевой поверхности колонны, а арматура должна быть не менее чем на 1,0 мм ниже поверхности детали или поверхности разъема. При пересечении нескольких стержней обратите внимание на неравномерность толщины стенки, вызванную пересечением. Проектирование ребер жесткости для пластиковых деталей
Опорная поверхность: пластик легко деформируется. С точки зрения позиционирования его следует классифицировать как позиционирование шерстяного эмбриона. С точки зрения площади позиционирования он должен быть небольшим. Например, опорная плоскость должна быть преобразована в небольшие выпуклые точки и выпуклые кольца. Наклонная крыша и расположение рядов.
Наклонная верхняя часть и ряд перемещаются в направлении разделения и перпендикулярно ему. Наклонная верхняя часть и ряд должны быть перпендикулярны направлению разделения, при этом должно быть достаточно места для перемещения, как показано на следующем рисунке: Решение проблем предела пластичности 1) Специальная обработка толщины стенки
Для особо крупных деталей, таких как корпусы игрушечных машинок, толщина стенки может быть относительно тонкой благодаря многоточечной подаче клея. Локальное место нанесения клея на колонну имеет большую толщину, что показано на следующем рисунке. Специальная обработка толщины стенки 2) Обработка небольших наклонных и вертикальных поверхностей
Поверхность штампа отличается высокой точностью размеров, высоким качеством поверхности, малым сопротивлением выемке из формы и малым уклоном выемки. Для достижения этой цели детали с небольшим уклоном заготовки вставляются отдельно, а вставки обрабатываются проволочной резкой и шлифовкой, как показано на рисунке ниже. Для обеспечения вертикальности боковой стенки требуется рабочее положение или наклонная верхняя часть. В рабочем положении имеется линия сопряжения. Во избежание очевидного сопряжения, проводка обычно располагается на стыке галтели и большой поверхности. Обработка малоуклонных и вертикальных поверхностей.
Для обеспечения вертикальности боковой стенки требуется рабочее положение или наклонная верхняя часть. В рабочем положении имеется линия сопряжения. Чтобы избежать явного сопряжения, проводка обычно размещается на стыке галтели и большой поверхности. Проблемы, которые часто приходится решать для пластиковых деталей: 1) Проблема переходной обработки.
Точность пластиковых деталей, как правило, невысокая. Между смежными деталями и различными поверхностями одной детали должна быть предусмотрена переходная обработка. Для перехода между различными поверхностями одной детали обычно используются небольшие канавки, а между различными деталями могут использоваться небольшие канавки и ступенчатые поверхности, как показано на рисунке. Обработка поверхности.
2) Величина зазора пластиковых деталейДетали собираются напрямую без движения, как правило, 0,1 мм;Шов обычно составляет 0,15 мм;
Минимальный зазор между деталями без соприкосновения составляет 0,3 мм, обычно 0,5 мм.3) Распространенные формы и зазоры пластиковых деталей показаны на рисунке. Распространенные формы и метод определения зазоров для остановки пластиковых деталей.
Требования к легкости, безопасности и декоративности в современной автомобильной промышленности стимулируют развитие традиционных технологий сварки в области автомобильных пластмасс. В последние годы благодаря применению различных высокотехнологичных технологий, таких как ультразвуковые, вибро-трение и лазерные технологии в области производства автомобильных пластиковых деталей, технический уровень и вспомогательные возможности отечественной промышленности по производству автомобильных деталей значительно улучшились. Что касается процесса сварки и сварки деталей салона автомобиля, сварки горячей пластиной, лазерной сварки, ультразвуковой сварки, нестандартного ультразвукового сварочного аппарата, вибрационного фрикционного аппарата и т. д. были разработаны. При этом может быть реализована однократная сварка всей или сложной конструкции, а оптимальные требования к проектированию могут быть достигнуты на основе упрощения конструкции пресс-формы и снижения затрат на формование. Для типичных деталей внутренней и внешней отделки большие компоненты с высоким качеством поверхности и сложные конструкции, такие как приборная панель, дверная панель, колонка, перчаточный ящик, впускной коллектор двигателя, передний и задний бампер, должны выбирать соответствующую технологию сварки и применять соответствующий процесс сварки в соответствии с требованиями внутренней конструкции, производительности, материалов и производства. расходы. Все эти применения позволяют не только завершить соответствующий производственный процесс, но и обеспечить отличное качество и идеальную форму изделий.
Сварочная машина с горячей пластиной: оборудование сварочной машины с горячей пластиной может контролировать горизонтальное или вертикальное движение сварочной матрицы с горячей пластиной, а система передачи приводится в движение пневматическим, гидравлическим приводом или серводвигателем. Преимущества технологии сварки горячей пластиной заключаются в том, что ее можно применять к заготовкам разных размеров без ограничения площади, применимо к любой сварочной поверхности, что позволяет компенсировать припуски на пластику, обеспечивать прочность сварки и корректировать процедуры сварки в соответствии с потребностями различных материалов (например, например, регулировка температуры сварки, времени сварки, времени охлаждения, давления входного воздуха, температуры сварки, времени переключения и т. д.), в процессе сварки оборудование может поддерживать хорошую стабильность, обеспечивать стабильный сварочный эффект и точность высоты заготовки после обработки.
Еще одной особенностью горизонтального сварочного аппарата является то, что он может вращаться на 90 градусов для очистки. Период обработки сварочного аппарата с горячей пластиной обычно можно разделить на: исходное положение (горячая пластина не перемещается вместе с верхней и нижней формами), период нагрева (горячая пластина перемещается между верхней и нижней формами и нагрев горячая плита перемещается вниз по верхней и нижней формам для растворения сварочных поверхностей верхней и нижней заготовок), период переноса (верхняя и нижняя формы возвращаются в исходное положение, а горячая плита выходит), период сварки и охлаждения (верхняя и нижние штампы соединяются, чтобы заготовка была сварена одновременно и охлаждена для формовки), и возвращаются в исходное положение (верхний и нижний штампы разделяются, и свариваемую заготовку можно вынуть).
В раннем автомобилестроении данное сварочное оборудование было относительно распространено, но с постоянным совершенствованием требований к конструкции, форме и сроку службы самих деталей требования к оборудованию для их обработки все выше и выше. Более того, поскольку размер оборудования ограничен размером свариваемых деталей, режим работы оборудования и режима работы оборудования следует выбирать в соответствии с размером деталей в конструкции. Самое главное - это детали. Площадь нагрева большая и наблюдается большая деформация. Кроме того, в процессе сварки различают полярность и неполярность свариваемых пластмасс, в результате чего происходит постепенная замена сварки горячей пластиной ультразвуковой сваркой и лазерной сваркой. Основные детали, используемые для сварки в Китае, включают автомобильный пластиковый топливный бак, аккумулятор, задний фонарь, перчаточный ящик и т. д.
Лазерная сварка: технология лазерной сварки широко используется в современной промышленности по производству медицинского оборудования. Лишь немногие производители в автомобильной промышленности используют воздухозаборные трубы для лазерной сварки и т. д. поскольку это новая технология сварки, она в определенной степени еще не очень развита, но считается, что она будет широко использоваться в ближайшем будущем из-за ее замечательных сварочных характеристик. Его преимущество в том, что он может сваривать изделия из ТПЭ/ТП или ТПЭ; при условии отсутствия вибрации можно сваривать нейлон, детали с чувствительными электронными деталями и трехмерную сварочную поверхность, что позволяет сэкономить затраты и уменьшить количество отходов.
В процессе сварки смола плавится меньше, поверхность сваривается плотно, не возникает заусенцев и переливов клея. Допускается сварка жестких пластиковых деталей без перелива клея и вибрации. Как правило, детали с мягкими или неровными сварочными поверхностями можно сваривать равномерно независимо от их размеров, особенно при крупносерийном производстве высокотехнологичных микродеталей. Однако проводимость лазера ограничена. Технология «квазисинхронной» лазерной сварки использует сканирующее зеркало для передачи лазерного луча на сварочную поверхность со скоростью 10 м/с в зависимости от формы сварки. Он может пройти по сварочной поверхности до 40 раз за 1 секунду. Пластик вокруг сварочной поверхности плавится, и после приложения давления две заготовки свариваются.
Лазерную сварку можно грубо разделить на: твердую систему Nd-YAG (лазерный луч генерируется кристаллом) и диодную систему (диодный лазер высокой мощности), программирование данных САПР. Все материалы можно сваривать лазером с корпусными материалами, среди которых акрилонитрил-бутадиен-стирол наиболее пригоден для лазерной сварки с другими материалами, нейлон, полипропилен и полиэтилен можно сваривать только с собственными корпусными материалами, а другие материалы имеют общую применимость для лазерной сварки. fqj
Контактное лицо: Ада Ли
Тел.: +86 17722440307
WhatsApp: +86 17722440307
Электронная почта: vicky@honscn.com
Добавить: 4F, № 41 Huangdang Road, Luowuwei Industrial, улица Даланг, Лунхуа, Шэньчжэнь, 518109, Китай