Honscn konzentriert sich auf professionelle CNC-Bearbeitungsdienstleistungen
seit 2003.
Stiftwellenteile sind ein Produkt, das fortschrittliche Technologie und den unermüdlichen Einsatz der Menschen vereint. Honscn Co.,Ltd ist stolz darauf, sein einziger Lieferant zu sein. Wählen wir aus gezeichnete Rohstoffe und verwenden fortschritt liche Technologie, machen wir das Produkt von stabiler Leistung und langlebiger Eigenschaft. Profession elle und erfahrene Mitarbeiter sind beschäftigt, um für die Qualitäts prüfung des Produkts ver antwort lich zu sein. Es ist auf Langlebigkeit und Qualitätsgarantie getestet.
Da sich soziale Medien zu einer wertvollen Plattform für das Marketing entwickelt haben, HONSCN legt zunehmend Wert auf den Aufbau einer guten Reputation im Internet. Indem wir der Qualitäts kontrolle höchste Priorität einräumen, schaffen wir Produkte mit einer stabileren Leistung und reduzieren die Reparatur rate erheblich. Die Produkte kommen bei den Kunden gut an, die auch aktive Nutzer in den sozialen Medien sind. Ihr positives Feedback hilft unseren Produkten, sich im Internet zu verbreiten.
Wir bieten bei Honscn eine breite Palette an Kundendiensten für den Kauf von Stiftwellenteilen und ähnlichen Produkten an, wie z. B. technischen Support und Unterstützung bei der Spezifikation. Wir zeichnen uns als führendes Unternehmen in der umfassenden Kundenbetreuung aus.
Shenzhen Honscn ist ein professioneller Hersteller von CNC-Maschinenteilen, Teilen für automatische Drehmaschinen und Schraubenbefestigungen. Wir bieten OEM- und ODM-Service mit allen verwandten Produkten für Kunden. Wir verfügen über ein professionelles Team aus Produktdesignern und Ingenieuren sowie ein professionelles QC-Team. Unsere Vertriebs-, Dokumentations- und Logistikabteilungen können die Anforderungen an die Präsentation von Dokumenten für verschiedene Zahlungsmethoden und verschiedene Transportarten erfüllen.
• Wir können auf Kundenwunsch offizielle Zeichnungen erstellen, oder der Kunde stellt uns seine Zeichnungen zur Verfügung, damit wir einen Preis angeben und Muster zur Genehmigung anfertigen können
• Nach Erhalt der Muster führt der Kunde einen Test auf Material, Größe und Toleranz durch. Wenn der Kunde die Größe oder das Material ändern muss, können wir zweite Muster zur Genehmigung arrangieren. Bis der Kunde die Muster genehmigt hat, bestätigen wir den Großauftrag
In der Zwischenzeit werden wir es testen, bevor wir Muster versenden. Und alle Tests werden streng nach Industriestandards durchgeführt.
• Wenn bestätigt wird, dass die Probe in Ordnung ist, muss der Kunde vor der Bestellung ein Werkstestzertifikat dieses Produkts vorlegen, das den EU-Standards wie CE, RoHS und REACH entspricht. Alle unsere Produkte entsprechen allen europäischen Zertifizierungen wie CE, RoHS, REACH usw. und alle verfügen über vorbereitete Standarddokumente zur Überprüfung durch Kunden
• Wir beginnen mit der Vorbereitung der Bestellmaterialien, wenn der Kunde alle Details wie Material, Größe, Toleranz, Oberflächenbeschaffenheit und andere Details des endgültigen Musters bestätigt.
Nach dem Paket wie Menge, Etikett, Versandzeichen usw. Werden vom Kunden bereitgestellt, beginnen wir mit der Organisation der Massenproduktion. Nachdem alle Waren fertig sind, senden Sie Bilder zur Genehmigung an den Kunden. Wir versprechen, dass die Verpackung den Wünschen des Kunden entspricht und Massenprodukte genau den Endmustern entsprechen. Auf den folgenden Fotos der Sendung liegt die Erfolgsquote der Fremdprüfung unseres Unternehmens bei 100 %.
• Nach Erhalt der gesamten Bestellung brachte der Kunde sie sofort auf den Markt und wurde schnell zum beliebtesten Produkt auf dem Markt, unabhängig davon, ob es sich um den traditionellen Markt, den Markt für hochwertige professionelle Verbindungselemente oder den Online-Verkauf bei Amazon handelte. Wir legen stets großen Wert auf die Qualität unserer Produkte, die von den Kunden anerkannt und regelmäßig nachgekauft wird.
Mittlerweile nutzen viele Industrien für Präzisionsteile die CNC-Bearbeitungsproduktion, aber nach Abschluss der CNC-Bearbeitung ist die Oberfläche vieler Produkte immer noch relativ rau, dieses Mal müssen Sie eine sekundäre Oberflächenbearbeitung durchführen.
Erstens ist die Oberflächenbehandlung nicht für alle CNC-Bearbeitungsprodukte geeignet. Einige Produkte können nach der Verarbeitung direkt verwendet werden, andere müssen von Hand poliert, galvanisiert, oxidiert, Radiumschnitzerei, Siebdruck, Pulversprühen und andere spezielle Verfahren durchgeführt werden. Hier sind einige Dinge, die Sie über die Oberflächenbehandlung wissen sollten.
1, Verbesserung der Produktgenauigkeit ; Nach Abschluss der Produktverarbeitung weisen einige Produkte eine raue Oberfläche auf und hinterlassen eine große Restspannung, die die Genauigkeit des Produkts verringert und die Präzision der Übereinstimmung zwischen den Teilen beeinträchtigt. In diesem Fall ist eine Oberflächenbehandlung des Produkts erforderlich.
2, sorgen für Verschleißfestigkeit des Produkts ; Wenn die Teile in normalen Nutzungsszenarien mit anderen Teilen interagieren, führt eine langfristige Nutzung zu einem erhöhten Verschleiß der Teile, was auch eine Bearbeitung der Produktoberfläche erfordert, um die Lebensdauer der Teile zu verlängern.
3, die Korrosionsbeständigkeit des Produkts verbessern ; Teile, die über einen längeren Zeitraum an stark korrosiven Orten eingesetzt werden, erfordern eine spezielle Oberflächenbehandlung, die das Polieren und Aufsprühen von Korrosionsschutzmitteln erfordert. Verbessern Sie die Korrosionsbeständigkeit und Lebensdauer des Produkts.
Die oben genannten drei Punkte sind die Voraussetzungen für die Oberflächenbearbeitung nach der CNC-Präzisionsteilebearbeitung, und im Folgenden werden verschiedene Oberflächenbehandlungsmethoden vorgestellt.
01. Was ist Galvanisieren?
Unter Galvanisieren versteht man die Oberflächentechnologie, bei der durch Elektrolyse in einer Salzlösung, die die metallisierte Gruppe enthält, ein fester Metallfilm auf der Oberfläche des Substrats erhalten wird, wobei die metallisierte Gruppe als Kathode und die metallisierte Gruppe oder ein anderer inerter Leiter als Anode darunter dient Wirkung von Gleichstrom.
02. Warum galvanisieren?
Der Zweck der Galvanisierung besteht darin Verbessern Sie das Erscheinungsbild des Materials und verleihen Sie der Oberfläche des Materials gleichzeitig verschiedene physikalische und chemische Eigenschaften , wie Korrosionsbeständigkeit, dekorative, Verschleißfestigkeit, Löt- und elektrische, magnetische, optische Eigenschaften.
03. Welche Arten und Anwendungen gibt es beim Galvanisieren?
1, verzinkt
Die verzinkte Schicht ist von hoher Reinheit und ist eine anodische Beschichtung. Die Zinkschicht übernimmt eine mechanische und elektrochemische Schutzfunktion für die Stahlmatrix.
Daher wird die verzinkte Schicht häufig in Maschinen, Hardware, Elektronik, Instrumenten, der Leichtindustrie und anderen Bereichen verwendet und ist eine der am häufigsten verwendeten Beschichtungsarten.
2. Verkupferung
Die Kupferbeschichtung ist eine kathodische Polarbeschichtung, die nur eine mechanische Schutzfunktion für das Grundmetall übernehmen kann. Die Verkupferungsschicht wird in der Regel nicht allein als schützende dekorative Beschichtung verwendet, sondern als untere oder mittlere Schicht der Beschichtung, um die Haftung zwischen der Oberflächenbeschichtung und dem Grundmetall zu verbessern.
Im Bereich der Elektronik, wie z. B. Durchsteckverkupferung auf Leiterplatten, sowie Hardwaretechnik, Kunsthandwerk, Möbeldekoration und anderen Bereichen.
3. Vernickelung
Die Vernickelungsschicht ist eine Schutzschicht mit negativer Polarität, die nur eine mechanische Schutzwirkung auf das Grundmetall hat. Neben der direkten Verwendung einiger medizinischer Geräte und Batteriegehäuse wird die vernickelte Schicht häufig als untere oder mittlere Zwischenschicht verwendet, die in der täglichen Hardware, der Leichtindustrie, Haushaltsgeräten, Maschinen und anderen Industrien weit verbreitet ist.
4. Verchromung
Die verchromte Schicht ist eine Beschichtung mit negativer Polarität, die nur eine mechanische Schutzfunktion übernimmt. Dekorative Verchromung, die untere Schicht ist im Allgemeinen poliert oder galvanisch abgeschieden.
Weit verbreitet in Instrumenten, Messgeräten, alltäglicher Hardware, Haushaltsgeräten, Flugzeugen, Automobilen, Motorrädern, Fahrrädern und anderen exponierten Teilen. Zur funktionellen Verchromung gehören Hartverchromung, poröses Chrom, Schwarzchrom, Opalchrom usw.
Die Hartchromschicht wird hauptsächlich für verschiedene Messsättel, Messgeräte, Schneidwerkzeuge und verschiedene Arten von Wellen verwendet. Die Chromschicht mit losen Löchern wird hauptsächlich bei Kolbenversagen im Zylinderhohlraum verwendet. Die schwarze Chromschicht wird für Teile verwendet, die eine matte Oberfläche und Verschleißfestigkeit benötigen, wie z. B. Luftfahrtinstrumente, optische Instrumente, Fotoausrüstung usw. Opaleszierendes Chrom wird hauptsächlich in verschiedenen Messgeräten verwendet.
5. Verzinnen
Im Vergleich zum Stahlsubstrat ist Zinn eine negativ polare Beschichtung, während es im Vergleich zum Kupfersubstrat eine Anodenbeschichtung darstellt. Die Verdünnungsschicht wird hauptsächlich als Schutzschicht aus dünnem Blech in der Dosenindustrie verwendet, und der größte Teil der Tempergusshaut besteht aus verzinntem Eisenblech. Ein weiterer wichtiger Einsatzbereich von Zinnbeschichtungen liegt in der Elektronik- und Energieindustrie.
6, Legierungsüberzug
In einer Lösung werden zwei oder mehr Metallionen gleichzeitig auf der Kathode ausgefällt, um einen gleichmäßigen, feinen Beschichtungsprozess zu bilden, der als Legierungsplattierung bezeichnet wird.
Die Legierungsgalvanisierung ist der Einzelmetallgalvanisierung hinsichtlich Kristalldichte, Porosität, Farbe, Härte, Korrosionsbeständigkeit, Verschleißfestigkeit, magnetischer Leitfähigkeit, Verschleißfestigkeit und Hochtemperaturbeständigkeit überlegen.
Es gibt mehr als 240 Arten von Galvanisierungslegierungen, aber weniger als 40 Arten werden tatsächlich in der Produktion verwendet. Es wird im Allgemeinen in drei Kategorien unterteilt: schützende Legierungsbeschichtung, dekorative Legierungsbeschichtung und funktionelle Legierungsbeschichtung .
Weit verbreitet in der Luftfahrt, Luft- und Raumfahrt, Navigation, Automobil, Bergbau, Militär, Instrumenten, Messgeräten, visueller Hardware, Geschirr, Musikinstrumenten und anderen Branchen.
Zusätzlich zu den oben genannten gibt es noch andere chemische Beschichtungen, Verbundbeschichtungen, Nichtmetallbeschichtungen, Vergoldungen, Silberbeschichtungen usw.
Die Oberfläche der durch CNC-Bearbeitung oder 3D-Druck bearbeiteten Artikel ist manchmal rau und die Oberflächenanforderungen an die Produkte sind hoch, sodass sie poliert werden müssen.
Unter Polieren versteht man den Einsatz mechanischer, chemischer oder elektrochemischer Maßnahmen zur Reduzierung der Oberflächenrauheit des Werkstücks, um eine helle, flache Oberflächenbearbeitungsmethode zu erhalten.
Polieren kann nicht die Maßhaltigkeit oder geometrische Genauigkeit des Werkstücks verbessern, sondern dient dem Zweck, eine glatte Oberfläche oder Spiegelglanz zu erhalten und manchmal auch, um Glanz zu beseitigen (Auslöschung).
Im Folgenden werden einige gängige Poliermethoden beschrieben:
01. Mechanisches Polieren
Das mechanische Polieren erfolgt durch Schneiden, plastische Verformung der Oberfläche des Materials, um die polierte konvexe und glatte Oberfläche zu polieren. Dabei werden im Allgemeinen Schleifsteinstreifen, Wollscheiben, Schleifpapier usw. verwendet. hauptsächlich manueller Betrieb , Oberflächenqualitätsanforderungen können zur superfeinen Poliermethode verwendet werden.
Unter Superfinish-Polieren versteht man die Verwendung spezieller Schleifwerkzeuge, bei denen die Polierflüssigkeit ein Schleifmittel enthält und fest auf die zu bearbeitende Oberfläche des Werkstücks gepresst wird, um eine Hochgeschwindigkeitsrotation zu ermöglichen. Dieses Verfahren wird häufig bei Formen für optische Linsen verwendet.
02. Chemisches Polieren
Beim chemischen Polieren werden die mikroskopisch kleinen hervorstehenden Teile der Materialoberfläche im chemischen Medium bevorzugt aufgelöst als die konkaven Teile, um eine glatte Oberfläche zu erhalten.
Der Hauptvorteil dieser Methode besteht darin, dass sie keine komplexe Ausrüstung erfordert, das Werkstück mit komplexer Form polieren kann und viele Werkstücke gleichzeitig mit hoher Effizienz polieren kann.
Das Kernproblem des chemischen Polierens ist die Aufbereitung der Polierflüssigkeit.
03. Elektrolytisches Polieren
Das Grundprinzip des elektrolytischen Polierens ist das gleiche wie das des chemischen Polierens, d. h. die Oberfläche wird geglättet, indem kleine hervorstehende Teile auf der Oberfläche des Materials selektiv aufgelöst werden.
Im Vergleich zum chemischen Polieren kann der Effekt der Kathodenreaktion eliminiert werden und der Effekt ist besser.
04. Ultraschallpolieren
Das Werkstück wird in die Schleifmittelsuspension gegeben und im Ultraschallfeld zusammengefügt, und das Schleifmittel wird auf der Werkstückoberfläche mithilfe der Schwingung der Ultraschallwelle geschliffen und poliert.
Die makroskopische Kraft der Ultraschallbearbeitung ist gering und verursacht keine Verformung des Werkstücks, aber die Herstellung und Installation von Werkzeugen ist schwieriger.
05. Flüssiges Polieren
Beim Flüssigkeitspolieren werden mit hoher Geschwindigkeit fließende Flüssigkeiten und die darin enthaltenen Schleifpartikel verwendet, um die Oberfläche des Werkstücks zu waschen und so den Polierzweck zu erreichen.
Gängige Methoden sind: Schleifstrahlbearbeitung, Flüssigkeitsstrahlbearbeitung, hydrodynamisches Schleifen Und so weiter. Hydrodynamisches Schleifen wird durch hydraulischen Druck angetrieben, damit das flüssige Medium, das die Schleifpartikel trägt, mit hoher Geschwindigkeit durch die Oberfläche des Werkstücks fließt.
Das Medium besteht hauptsächlich aus speziellen Verbindungen mit guter Fließfähigkeit bei niedrigem Druck und gemischt mit Schleifmitteln, bei denen es sich um Siliziumkarbidpulver handeln kann.
06. Magnetisches Schleifen und Polieren
Beim magnetischen Schleifen und Polieren wird magnetisches Schleifmittel unter Einwirkung eines Magnetfelds verwendet, um eine Schleifbürste zu bilden und das Werkstück zu schleifen.
Diese Methode bietet die Vorteile einer hohen Verarbeitungseffizienz, einer guten Qualität, einer einfachen Kontrolle der Verarbeitungsbedingungen und guter Arbeitsbedingungen.
Die oben genannten sind 6 gängige Polierverfahren.
HONSCN Precision ist seit 20 Jahren ein professioneller Hersteller von CNC-Bearbeitungen. Zusammenarbeit mit mehr als 1.000 Unternehmen, umfassende Technologieakkumulation, leitendes Technikerteam, herzlich willkommen, maßgeschneiderte Verarbeitung zu konsultieren! Kundendienst
Allgemeine Schritte beim Entwurf von Kunststoffteilen: Kunststoffteile werden auf der Grundlage industrieller Modellierung entworfen. Überprüfen Sie zunächst, ob es ähnliche Produkte als Referenz gibt, und führen Sie dann eine detaillierte Funktionszerlegung der Produkte und Teile durch, um die wichtigsten Prozessprobleme wie Teilefaltung, Wandstärke, Entformungsneigung, Übergangsbehandlung zwischen Teilen, Verbindungsbehandlung und Festigkeitsbehandlung zu bestimmen Teile.1. Ähnliche Referenz
Suchen Sie vor dem Entwurf zunächst nach ähnlichen Produkten des Unternehmens und seiner Kollegen, nach den Problemen und Mängeln, die bei den Originalprodukten aufgetreten sind, und beziehen Sie sich auf die vorhandene ausgereifte Struktur, um problematische Strukturformen zu vermeiden.2. Bestimmen Sie den Teilrabatt, den Übergang, die Verbindung und die Abstandsbehandlung zwischen Teilen. Verstehen Sie den Modellierungsstil aus der Modellierungszeichnung und der Effektzeichnung, arbeiten Sie an der funktionalen Zerlegung des Produkts mit, bestimmen Sie die Anzahl der Teile (verschiedene Oberflächenzustände werden entweder in verschiedene Teile unterteilt oder Es muss eine Überbehandlung zwischen verschiedenen Oberflächen vorliegen), die Überbehandlung zwischen den Oberflächen der Teile bestimmen und den Verbindungsmodus und das Passungsspiel zwischen den Teilen bestimmen.
3. Bestimmung der Teilefestigkeit und VerbindungsfestigkeitBestimmen Sie die Wandstärke des Teilkörpers entsprechend der Produktgröße. Die Festigkeit des Teils selbst wird durch die Wandstärke des Kunststoffteils, die Strukturform (das Kunststoffteil in Form einer flachen Platte hat die schlechteste Festigkeit), die Versteifung und die Versteifung bestimmt. Bei der Bestimmung der Einzelfestigkeit von Teilen muss auch die Verbindungsfestigkeit zwischen Teilen bestimmt werden. Zu den Methoden zum Ändern der Verbindungsstärke gehören: Hinzufügen einer Schraubensäule, Hinzufügen eines Anschlags, Hinzufügen einer Schnallenposition und Hinzufügen von Verstärkungsknochen an der Ober- und Unterseite.4. Bestimmung der Entformungsneigung
Die Entformungsneigung muss umfassend anhand des Materials (PP, PE-Kieselgel und Gummi können gewaltsam entformt werden) und des Oberflächenzustands (die Neigung der dekorativen Maserung muss größer sein als die der glatten Oberfläche und die Neigung der geätzten Oberfläche muss größer sein als die der glatten Oberfläche) bestimmt werden 0,5 Grad größer als in der Schablone gefordert, so weit wie möglich, um sicherzustellen, dass die geätzte Oberfläche nicht beschädigt wird und die Produktausbeute verbessert wird), Transparenz oder nicht bestimmt die Entformungsneigung der Teile (die transparente Neigung muss größer sein). ).Materialarten, die von verschiedenen Produktserien des Unternehmens empfohlen werden.Oberflächenbehandlung von Kunststoffteilen
Auswahl der Wandstärke von KunststoffteilenBei Kunststoffteilen ist eine gleichmäßige Wandstärke erforderlich, und das Werkstück mit ungleichmäßiger Wandstärke weist Schrumpfungsspuren auf. Es ist erforderlich, dass das Verhältnis der Versteifung zur Hauptwandstärke weniger als 0,4 beträgt und das maximale Verhältnis 0,6 nicht überschreitet.Entformungsneigung von Kunststoffteilen
Bei der Konstruktion von stereoskopischen Zeichnungen, bei denen das Erscheinungsbild und die Montage beeinflusst werden, muss die Neigung gezeichnet werden, und die Neigung wird im Allgemeinen nicht für Versteifungen gezeichnet. Die Entformungsneigung von Kunststoffteilen wird durch das Material, den Oberflächendekorationsstatus und ob bestimmt Teile sind transparent oder nicht. Die Entformungsneigung von Hartplastik ist größer als die von Weichplastik. Je höher das Teil, desto tiefer das Loch und desto geringer die Neigung. Empfohlene Entformungsneigung für verschiedene Materialien
Numerische Werte unterschiedlicher Genauigkeit in verschiedenen GrößenbereichenMaßgenauigkeit von KunststoffteilenIm Allgemeinen ist die Genauigkeit von Kunststoffteilen nicht hoch. Im praktischen Einsatz überprüfen wir hauptsächlich die Montagemaße und markieren hauptsächlich die Gesamtmaße, Montagemaße und andere zu kontrollierende Maße im Plan.
In der Praxis berücksichtigen wir hauptsächlich die Konsistenz der Dimensionen. Die Kanten der oberen und unteren Abdeckung müssen ausgerichtet sein. Wirtschaftliche Genauigkeit verschiedener Materialien. Zahlenwerte unterschiedlicher Genauigkeit in verschiedenen Größenbereichen
Oberflächenrauheit von Kunststoffen1) Die Rauheit der geätzten Oberfläche kann nicht markiert werden. Wenn die Oberflächenbeschaffenheit des Kunststoffs besonders hoch ist, kreisen Sie diesen Bereich ein und markieren Sie den Oberflächenzustand als Spiegel.2) Die Oberfläche von Kunststoffteilen ist im Allgemeinen glatt und glänzend, und die Oberflächenrauheit beträgt im Allgemeinen ra2,5 0,2 um.
3) Die Oberflächenrauheit von Kunststoff hängt hauptsächlich von der Oberflächenrauheit des Formhohlraums ab. Die Oberflächenrauheit von Formen muss ein bis zwei Stufen höher sein als die von Kunststoffteilen. Die Formoberfläche kann durch Ultraschall- und elektrolytisches Polieren einen Ra0,05-Wert erreichen.KehlnahtDer Kehlnahtwert beim Spritzgießen wird durch die angrenzende Wandstärke bestimmt, im Allgemeinen das 0,5- bis 1,5-fache der Wandstärke, jedoch nicht weniger als 0,5 mm.
Die Position der Trennfläche muss sorgfältig ausgewählt werden. Auf der Trennfläche befindet sich eine Ausrundung, und der Ausrundungsteil muss sich auf der anderen Seite der Matrize befinden. Es ist schwierig herzustellen und es gibt feine Linien am Filet. Allerdings ist eine Verrundung erforderlich, wenn eine Anti-Schnitt-Hand erforderlich ist.VersteifungsproblemDer Spritzgussprozess ähnelt dem Gussprozess. Die Ungleichmäßigkeit der Wandstärke führt zu Schrumpfungsfehlern. Im Allgemeinen beträgt die Wandstärke der Verstärkung das 0,4-fache der Hauptkörperdicke und das Maximum beträgt nicht mehr als das 0,6-fache. Der Abstand zwischen den Stäben beträgt mehr als 4T und die Höhe der Stäbe beträgt weniger als 3T. Bei der Methode zur Verbesserung der Festigkeit von Teilen wird diese im Allgemeinen verstärkt, ohne die Wandstärke zu erhöhen.
Die Bewehrung der Schraubsäule muss mindestens 1,0 mm niedriger sein als die Endfläche der Säule, und die Bewehrung muss mindestens 1,0 mm niedriger sein als die Teiloberfläche oder die Trennfläche. Wenn sich mehrere Stäbe kreuzen, achten Sie darauf, dass dies nicht der Fall ist -Gleichmäßigkeit der Wandstärke durch die Kreuzung.Design von Versteifungen für Kunststoffteile
AuflageflächeKunststoff ist leicht verformbar. In Bezug auf die Positionierung sollte es als Positionierung des Wollembryos klassifiziert werden. Der Positionierungsbereich sollte klein sein. Beispielsweise sollte die Unterstützung der Ebene in kleine konvexe Punkte und konvexe Ringe geändert werden. Schräge Dach- und Reihenposition
Die geneigte Oberseite und die Reihenposition bewegen sich in Teilungsrichtung und senkrecht zur Teilungsrichtung. Die geneigte Oberseite und die Reihenposition müssen senkrecht zur Trennrichtung sein und es muss ausreichend Bewegungsraum vorhanden sein, wie in der folgenden Abbildung dargestellt: Behandlung von Prozessproblemen bei plastischen Grenzen1) Spezielle Behandlung der Wandstärke
Bei besonders großen Werkstücken, wie zum Beispiel der Karosserie von Spielzeugautos, kann die Wandstärke durch die Methode der Mehrpunkt-Leimzuführung relativ dünn ausfallen. Die lokale Klebeposition der Säule ist dick und wird wie in der folgenden Abbildung dargestellt behandelt.Spezielle Behandlung der Wandstärke2) Behandlung kleiner Neigungen und vertikaler Flächen
Die Formoberfläche weist eine hohe Maßgenauigkeit, eine hohe Oberflächengüte, einen geringen Entformungswiderstand und eine geringe Entformungsneigung auf. Um diesen Zweck zu erreichen, werden die Teile mit geringer Neigung des Werkstücks separat eingelegt und die Einsätze durch Drahtschneiden und Schleifen bearbeitet, wie in der Abbildung unten gezeigt. Um sicherzustellen, dass die Seitenwand vertikal ist, muss die Laufposition bzw eine geneigte Oberseite ist erforderlich. An der Laufposition befindet sich eine Schnittstellenleitung. Um offensichtliche Schnittstellen zu vermeiden, wird die Verkabelung im Allgemeinen an der Verbindungsstelle zwischen Hohlkehle und großer Fläche platziert. Behandlung kleiner Neigungen und vertikaler Flächen
Um sicherzustellen, dass die Seitenwand vertikal ist, ist die Laufposition oder die geneigte Oberseite erforderlich. An der Laufposition befindet sich eine Schnittstellenleitung. Um eine offensichtliche Schnittstelle zu vermeiden, wird die Verkabelung im Allgemeinen an der Verbindungsstelle zwischen Kehle und großer Oberfläche platziert. Bei Kunststoffteilen sind häufig Probleme zu lösen1) Übergangsverarbeitungsproblem
Die Genauigkeit von Kunststoffteilen ist im Allgemeinen nicht hoch. Zwischen benachbarten Teilen und verschiedenen Oberflächen desselben Teils muss eine Übergangsbehandlung erfolgen. Kleine Nuten werden im Allgemeinen für den Übergang zwischen verschiedenen Oberflächen desselben Teils verwendet, und kleine Nuten und versetzte Hoch-Tief-Oberflächen können zwischen verschiedenen Teilen verwendet werden, wie in gezeigt die figur. Oberfläche über behandlung
2) Abstandswert von Kunststoffteilen. Teile werden ohne Bewegung direkt zusammengebaut, im Allgemeinen 0,1 mm; die Naht beträgt im Allgemeinen 0,15 mm;
Der Mindestabstand zwischen Teilen ohne Kontakt beträgt 0,3 mm, im Allgemeinen 0,5 mm.3) Die üblichen Formen und Abstände von Kunststoffteilen sind in der Abbildung „Gemeinsame Formen und Abstandsmethode zum Anhalten von Kunststoffteilen“ dargestellt
Die Anforderungen an Leichtbau, Sicherheit und Dekoration in der modernen Automobilindustrie treiben die Entwicklung der traditionellen Schweißtechnik im Bereich Automobilkunststoffe voran. In den letzten Jahren wurden durch den Einsatz verschiedener High-End-Technologien wie Ultraschall-, Vibrationsreibungs- und Lasertechnologie im Bereich der Herstellung von Automobil-Kunststoffteilen das technische Niveau und die Unterstützungskapazität der heimischen Automobilteile-Herstellungsindustrie erheblich verbessert. Was das Schweißen und den Schweißprozess von Automobil-Innenteilen betrifft, Heizplattenschweißen, Laserschweißen, Ultraschallschweißen, nicht standardmäßige Ultraschallschweißmaschinen, Vibrationsreibungsmaschinen usw. wurden entwickelt. Dabei können einmalige Gesamt- oder komplexe Strukturschweißungen realisiert und optimale Designanforderungen durch Vereinfachung des Formdesigns und Reduzierung der Formkosten erreicht werden. Für typische Innen- und Außenverkleidungsteile große Bauteile mit hoher Oberflächenqualität Für komplexe Strukturen wie Instrumententafel, Türverkleidung, Säule, Handschuhfach, Motoransaugkrümmer, vordere und hintere Stoßstange müssen entsprechende Schweißtechnologien ausgewählt und geeignete Schweißverfahren entsprechend den Anforderungen an Innenstruktur, Leistung, Materialien und Produktion angewendet werden kosten. Alle diese Anwendungen können nicht nur den entsprechenden Herstellungsprozess abschließen, sondern auch die hervorragende Qualität und perfekte Form der Produkte gewährleisten.
Heizplattenschweißgerät: Die Heizplattenschweißmaschinenausrüstung kann die horizontale oder vertikale Bewegung des Heizplattenschweißwerkzeugs steuern, und das Übertragungssystem wird durch einen pneumatischen, hydraulischen Antrieb oder einen Servomotor angetrieben. Die Vorteile der Heizplattenschweißtechnologie bestehen darin, dass sie ohne Flächenbeschränkung auf Werkstücke unterschiedlicher Größe angewendet werden kann, auf jede Schweißoberfläche anwendbar ist, den Ausgleich von Kunststoffzugabe ermöglicht, die Schweißfestigkeit gewährleistet und die Schweißverfahren an die Anforderungen verschiedener Materialien (z. B B. die Einstellung der Schweißtemperatur, der Schweißzeit, der Abkühlzeit, des Eingangsluftdrucks, der Schweißtemperatur und der Schaltzeit usw.). Im Schweißprozess kann die Ausrüstung eine gute Stabilität aufrechterhalten, einen gleichmäßigen Schweißeffekt und eine Genauigkeit der Werkstückhöhe nach der Bearbeitung gewährleisten.
Ein weiteres Merkmal der horizontalen Heizplattenschweißmaschine ist, dass sie sich zum Reinigen um 90° drehen lässt. Der Verarbeitungszeitraum des Heizplattenschweißgeräts kann im Allgemeinen unterteilt werden in: Ausgangsposition (die Heizplatte bewegt sich nicht mit der oberen und unteren Form), Heizperiode (die Heizplatte bewegt sich zwischen der oberen und unteren Form und die Hitze der Die Heizplatte bewegt sich entlang der oberen und unteren Formen nach unten, um die Schweißflächen der oberen und unteren Werkstücke aufzulösen), die Transferperiode (die oberen und unteren Formen kehren in die ursprüngliche Position zurück und die Heizplatte verlässt die Heizplatte), die Schweiß- und Abkühlperiode (die obere und die unteren Matrizen werden zusammengefügt, um das Werkstück gleichzeitig zu verschweißen und zum Umformen abzukühlen) und kehren in die ursprüngliche Position zurück (die oberen und unteren Matrizen werden getrennt und das geschweißte Werkstück kann herausgenommen werden).
In der frühen Automobilindustrie waren diese Schweißgeräte relativ verbreitet, doch mit der kontinuierlichen Verbesserung der Anforderungen an Struktur, Form und Lebensdauer der Teile selbst werden auch die Anforderungen an deren Verarbeitungsgeräte immer höher. Da die Größe der Ausrüstung außerdem auf die Größe der geschweißten Teile beschränkt ist, sollten die Ausrüstung und der Antriebsmodus der Ausrüstung entsprechend der Größe der Teile in der Konstruktion ausgewählt werden. Das Wichtigste sind die Teile. Die Heizfläche ist groß und es kommt zu einer großen Verformung. Darüber hinaus unterscheidet der Schweißprozess zwischen Polarität und Nichtpolarität beim Schweißen von Kunststoffen, was dazu führt, dass das Heizplattenschweißen schrittweise durch Ultraschallschweißen und Laserschweißen ersetzt wird. Zu den Hauptteilen, die in China zum Schweißen verwendet werden, gehören der Kraftstofftank aus Kunststoff für Kraftfahrzeuge, die Batterie, die Rückleuchte, das Handschuhfach usw.
Laserschweißen: Die Laserschweißtechnologie ist in der heutigen Medizingeräteindustrie weit verbreitet. Nur wenige Hersteller in der Automobilindustrie verwenden das Laserschweißen von Lufteinlassrohren usw. Da es sich um eine neue Schweißtechnologie handelt, ist sie bis zu einem gewissen Grad noch nicht sehr ausgereift. Es wird jedoch angenommen, dass sie aufgrund ihrer bemerkenswerten Schweißeigenschaften in naher Zukunft weit verbreitet sein wird. Sein Vorteil besteht darin, dass TPE / TP- oder TPE-Produkte geschweißt werden können. Unter der Bedingung, dass keine Vibrationen auftreten, können Nylon, Werkstücke mit empfindlichen elektronischen Teilen und dreidimensionale Schweißflächen geschweißt werden, was Kosten sparen und Abfallprodukte reduzieren kann.
Beim Schweißvorgang schmilzt das Harz weniger, die Oberfläche kann dicht verschweißt werden und es kommt zu keinem Grat oder Kleberüberlauf. Es ist zulässig, starre Kunststoffteile ohne Leimüberlauf und Vibrationen zu verschweißen. Generell können Werkstücke mit weichen oder unregelmäßigen Schweißflächen unabhängig von der Werkstückgröße gleichmäßig geschweißt werden, insbesondere bei der Großserienfertigung von High-Tech-Mikroteilen. Allerdings ist die Laserleitung begrenzt. Die „quasisynchrone“ Laserschweißtechnologie nutzt einen Scanspiegel, um den Laserstrahl je nach Schweißform mit einer Geschwindigkeit von 10 m/s auf die Schweißfläche zu übertragen. Es kann bis zu 40 Mal pro Sekunde über die Schweißfläche laufen. Der Kunststoff um die Schweißfläche schmilzt und die beiden Werkstücke werden nach Druckbeaufschlagung verschweißt.
Das Laserschweißen kann grob unterteilt werden in: festes Nd-YAG-System (Laserstrahl wird durch Kristall erzeugt) und Diodensystem (Hochleistungsdiodenlaser), CAD-Datenprogrammierung. Alle Materialien können mit Körpermaterialien lasergeschweißt werden, wobei Acrylnitril-Butadien-Styrol am besten zum Laserschweißen mit anderen Materialien geeignet ist, Nylon, Polypropylen und Polyethylen nur mit ihren eigenen Körpermaterialien geschweißt werden können und andere Materialien allgemein für das Laserschweißen geeignet sind. fqj
Kontakt: Ada Li
Tel:86 17722440307
WhatsApp: +86 17722440307
Email: Ada@honscn.com
Hinzufügen: 4F, Nr. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China