Honscn se concentre sur les services professionnels d'usinage CNC
depuis 2003.
La fabrication par usinage CNC a créé des avantages considérables pour Honscn Co., Ltd et ses clients. La caractéristique exceptionnelle de ce produit réside dans la haute performance. Bien qu'il soit supérieur dans les matériaux et compliqué dans le processus, le marketing direct réduit le prix et rend le coût encore plus bas. Par conséquent, il est très compétitif sur le marché et devient de plus en plus populaire pour ses performances supérieures et son coût réduit.
Pour maintenir de bonnes ventes, nous favorisons HONSCN marque à plus de clients de la bonne manière. Tout d'abord, nous nous concentrons sur des groupes spécifiques. Nous avons compris ce qu'ils veulent et avons résonné avec eux. Ensuite, nous utilisons la plateforme de médias sociaux et avons gagné beaucoup de fans suivants. De plus, nous utilisons des outils d'analyse pour assurer l'efficacité des campagnes de marketing.
Chez Honscn, notre équipe de service client accorde toujours une priorité relativement plus élevée aux commandes des clients. Nous facilitons une livraison rapide, des solutions d'emballage polyvalentes et une garantie produit pour tous les produits, y compris la fabrication par usinage CNC.
Dans le domaine de l'usinage, après les méthodes de processus d'usinage CNC et la division des processus, le contenu principal du parcours de processus est d'organiser rationnellement ces méthodes de traitement et cette séquence de traitement. En général, l'usinage CNC de pièces mécaniques comprend découpe, traitement thermique et processus auxiliaires tels que le traitement de surface, le nettoyage et l'inspection. La séquence de ces processus affecte directement la qualité, l’efficacité de la production et le coût des pièces. Par conséquent, lors de la conception d'itinéraires d'usinage CNC, l'ordre des processus de découpe, de traitement thermique et auxiliaires doit être raisonnablement organisé et le problème de connexion entre eux doit être résolu.
En plus des étapes de base mentionnées ci-dessus, des facteurs tels que la sélection des matériaux, la conception des accessoires et la sélection des équipements doivent être pris en compte lors du développement d'un itinéraire d'usinage CNC. La sélection des matériaux est directement liée aux performances finales des pièces, différents matériaux ont des exigences différentes en matière de paramètres de coupe ; La conception du luminaire affectera la stabilité et la précision des pièces en cours de traitement ; La sélection des équipements doit déterminer le type de machine-outil adapté à ses besoins de production en fonction des caractéristiques du produit.
1, la méthode de traitement des pièces de machines de précision doit être déterminée en fonction des caractéristiques de la surface. Sur la base de la connaissance des caractéristiques des diverses méthodes de traitement, de la maîtrise de l'économie de traitement et de la rugosité de surface, la méthode capable de garantir la qualité de traitement, l'efficacité de la production et l'économie est sélectionnée.
2, sélectionnez la référence de positionnement de dessin appropriée, selon le principe de sélection de référence brute et fine pour déterminer raisonnablement la référence de positionnement de chaque processus.
3 , Lors de l'élaboration du parcours d'usinage des pièces, il est nécessaire de diviser les étapes d'ébauche, semi-fine et de finition des pièces sur la base de l'analyse des pièces, et déterminer le degré de concentration et de dispersion du processus, et organiser raisonnablement la séquence de traitement des surfaces. Pour les pièces complexes, plusieurs schémas peuvent être envisagés en premier, et le schéma de traitement le plus raisonnable peut être sélectionné après comparaison et analyse.
4, déterminer l'allocation de traitement, la taille du processus et la tolérance de chaque processus.
5, sélectionnez les machines-outils et les travailleurs, les clips, les quantités, les outils de coupe. Le choix des équipements mécaniques doit non seulement garantir la qualité du traitement, mais également être économique et raisonnable. Dans les conditions de production en série, des machines-outils générales et des gabarits spéciaux doivent généralement être utilisés.
6, Déterminer les exigences techniques et les méthodes d'inspection de chaque processus majeur. La détermination de la quantité de coupe et du quota de temps de chaque processus est généralement décidée par l'opérateur pour une seule usine de production en petits lots. Ce n'est généralement pas précisé dans la fiche du processus d'usinage. Cependant, dans les usines de production de lots moyens et de masse, afin d'assurer la rationalité de la production et l'équilibre du rythme, il est nécessaire que la quantité de coupe soit spécifiée et ne doit pas être modifiée à volonté.
D'abord dur, puis bien
La précision du traitement est progressivement améliorée selon l'ordre du tournage grossier - tournage semi-fin - tournage fin. Le tour d'ébauche peut éliminer la majeure partie de la surépaisseur d'usinage de la surface de la pièce en peu de temps, augmentant ainsi le taux d'enlèvement de métal et répondant à l'exigence d'uniformité de la surépaisseur. Si la quantité résiduelle laissée après le tournage grossier ne répond pas aux exigences de finition, il est nécessaire de prévoir une voiture de semi-finition pour la finition. La voiture fine doit s'assurer que le contour de la pièce est coupé en fonction de la taille du dessin pour garantir la précision du traitement.
Approchez-vous d'abord, puis loin
Dans des circonstances normales, les pièces proches de l'outil doivent être traitées en premier, puis les pièces éloignées de l'outil à l'outil doivent être traitées pour raccourcir la distance de déplacement de l'outil et réduire le temps de déplacement à vide. Lors du tournage, il est avantageux de maintenir la rigidité de l'ébauche ou du produit semi-fini et d'améliorer ses conditions de coupe.
Le principe de l'intersection interne et externe
Pour les pièces qui ont à la fois une surface intérieure (cavité intérieure) et une surface extérieure à traiter, lors de l'organisation de la séquence de traitement, les surfaces intérieures et extérieures doivent d'abord être ébauchées, puis les surfaces intérieures et extérieures doivent être finies. Ne doit pas faire partie de la surface de la pièce (surface extérieure ou surface intérieure) après traitement, puis traitement d'autres surfaces (surface intérieure ou surface extérieure).
Principe de base premier
La priorité doit être donnée à la surface utilisée comme référence de finition. En effet, plus la surface de la référence de positionnement est précise, plus l'erreur de serrage est faible. Par exemple, lors de l'usinage de pièces d'arbre, le trou central est généralement usiné en premier, puis la surface extérieure et la face d'extrémité sont usinées avec le trou central comme base de précision.
Le principe du premier et du second
La surface de travail principale et la surface de base d'assemblage des pièces doivent être traitées en premier, afin de détecter rapidement les défauts modernes sur la surface principale de l'ébauche. La surface secondaire peut être intercalée, placée dans une certaine mesure sur la surface principale usinée, avant la finition finale.
Le principe du visage avant le trou
La taille du contour plan des pièces de boîte et de support est grande, et le plan est généralement traité en premier, puis le trou et les autres tailles sont traités. Cet agencement de séquence de traitement, d'une part avec le positionnement du plan traité, est stable et fiable ; D'autre part, il est facile de traiter le trou sur le plan usiné et peut améliorer la précision de traitement du trou, en particulier lors du perçage, l'axe du trou n'est pas facile à dévier.
Lors du développement du processus d'usinage des pièces, il est nécessaire de sélectionner la méthode de traitement appropriée, l'équipement de la machine-outil, les outils de mesure des pinces, le flan et les exigences techniques pour les travailleurs en fonction du type de production des pièces.
Le succès ou l’échec des opérations aérospatiales dépend de l’exactitude, de la précision et de la qualité des composants utilisés. Pour cette raison, les entreprises aérospatiales utilisent des techniques et des processus de fabrication avancés pour garantir que leurs composants répondent pleinement à leurs besoins. Alors que les nouvelles méthodes de fabrication telles que l’impression 3D gagnent rapidement en popularité dans l’industrie, les méthodes de fabrication traditionnelles telles que l’usinage continuent de jouer un rôle clé dans la production de pièces et de produits destinés aux applications aérospatiales. De meilleurs programmes de FAO, des machines-outils spécifiques à des applications, des matériaux et des revêtements améliorés, ainsi qu'un meilleur contrôle des copeaux et un meilleur amortissement des vibrations, ont considérablement modifié la manière dont les entreprises aérospatiales fabriquent des composants aérospatiaux critiques. Cependant, un équipement sophistiqué ne suffit pas. Les fabricants doivent posséder l’expertise nécessaire pour surmonter les défis de traitement des matériaux de l’industrie aérospatiale.
La fabrication de pièces aérospatiales nécessite d’abord des exigences matérielles spécifiques. Ces pièces nécessitent généralement une résistance élevée, une faible densité, une stabilité thermique élevée et une résistance à la corrosion pour supporter des conditions de fonctionnement extrêmes.
Les matériaux aérospatiaux courants comprennent:
1. Alliage d'aluminium à haute résistance
Les alliages d'aluminium à haute résistance sont idéaux pour les pièces structurelles d'avions en raison de leur légèreté, de leur résistance à la corrosion et de leur facilité de traitement. Par exemple, l’alliage d’aluminium 7075 est largement utilisé dans la fabrication de pièces aérospatiales.
2. alliage de titane
Les alliages de titane ont un excellent rapport résistance/poids et sont largement utilisés dans les pièces de moteurs d’avion, les composants de fuselage et les vis.
3. Superalliage
Les superalliages maintiennent résistance et stabilité à haute température et conviennent aux tuyères de moteurs, aux aubes de turbine et à d'autres pièces à haute température.
4. Matériau composite
Les composites en fibre de carbone réussissent bien à réduire le poids structurel, à augmenter la résistance et à réduire la corrosion, et sont couramment utilisés dans la fabrication de boîtiers pour pièces aérospatiales et composants d'engins spatiaux.
Planification et conception des processus
La planification et la conception du processus sont nécessaires avant le traitement. À ce stade, il est nécessaire de déterminer le schéma global de traitement en fonction des exigences de conception des pièces et des caractéristiques des matériaux. Cela inclut la détermination du processus de traitement, le choix de l'équipement de la machine-outil, la sélection des outils, etc. Dans le même temps, il est nécessaire de réaliser une conception détaillée du processus, y compris la détermination du profil de coupe, de la profondeur de coupe, de la vitesse de coupe et d'autres paramètres.
Processus de préparation et de découpe du matériau
Dans le processus de traitement des pièces aérospatiales, la première nécessité est de préparer le matériel de travail. Habituellement, les matériaux utilisés dans les pièces d'aviation comprennent l'acier allié à haute résistance, l'acier inoxydable, l'alliage d'aluminium, etc. Une fois la préparation du matériau terminée, le processus de découpe commence.
Cette étape implique la sélection des machines-outils, telles que les machines-outils à commande numérique, les tours, les fraiseuses, etc., ainsi que la sélection des outils de coupe. Le processus de coupe doit contrôler strictement la vitesse d'avance, la vitesse de coupe, la profondeur de coupe et d'autres paramètres de l'outil pour garantir la précision dimensionnelle et la qualité de surface des pièces.
Processus d'usinage de précision
Les composants aérospatiaux sont généralement très exigeants en termes de taille et de qualité de surface, l'usinage de précision est donc une étape indispensable. A ce stade, il peut être nécessaire de recourir à des procédés de haute précision tels que le meulage et l'électroérosion. L’objectif du processus d’usinage de précision est d’améliorer encore la précision dimensionnelle et l’état de surface des pièces, garantissant ainsi leur fiabilité et leur stabilité dans le domaine aéronautique.
Traitement thermique
Certaines pièces aérospatiales peuvent nécessiter un traitement thermique après un usinage de précision. Le processus de traitement thermique peut améliorer la dureté, la résistance et la résistance à la corrosion des pièces. Cela inclut les méthodes de traitement thermique telles que la trempe et le revenu, qui sont sélectionnées en fonction des exigences spécifiques des pièces.
Revêtement de surface
Afin d'améliorer la résistance à l'usure et à la corrosion des pièces d'aviation, un revêtement de surface est généralement nécessaire. Les matériaux de revêtement peuvent inclure du carbure cémenté, un revêtement céramique, etc. Les revêtements de surface peuvent non seulement améliorer les performances des pièces, mais également prolonger leur durée de vie.
Assemblage et tests
Effectuer l'assemblage et l'inspection des pièces. À ce stade, les pièces doivent être assemblées conformément aux exigences de conception pour garantir la précision de la correspondance entre les différentes pièces. Dans le même temps, des tests rigoureux sont nécessaires, notamment des tests dimensionnels, des tests de qualité de surface, des tests de composition des matériaux, etc., pour garantir que les pièces répondent aux normes de l'industrie aéronautique.
Contrôle de qualité strict: Les exigences de contrôle de qualité des pièces d'aviation sont très strictes, et des tests et des contrôles stricts sont requis à chaque étape de traitement des pièces d'aviation pour garantir que la qualité des pièces répond aux normes.
Exigences de haute précision: Les composants aérospatiaux nécessitent généralement une très grande précision, notamment en termes de précision dimensionnelle, de forme et de qualité de surface. Par conséquent, des machines-outils et des outils de haute précision doivent être utilisés dans le processus de traitement pour garantir que les pièces répondent aux exigences de conception.
Conception de structures complexes: Les pièces d'aviation ont souvent des structures complexes et il est nécessaire d'utiliser des machines-outils CNC multi-axes et d'autres équipements pour répondre aux besoins de traitement de structures complexes.
Résistance à haute température et haute résistance: Les pièces d'aviation fonctionnent généralement dans des environnements difficiles tels que des températures et des pressions élevées, il est donc nécessaire de choisir des matériaux résistants aux températures élevées et à haute résistance, et d'effectuer le processus de traitement thermique correspondant.
Dans l’ensemble, le traitement des pièces aérospatiales est un processus hautement technologique et exigeant en précision qui nécessite des processus opérationnels stricts et des équipements de traitement avancés pour garantir que la qualité et les performances des pièces finales peuvent répondre aux exigences strictes du secteur aéronautique.
Le traitement des pièces aérospatiales est un défi, principalement dans les domaines suivants:
Géométrie complexe
Les pièces aérospatiales présentent souvent des géométries complexes qui nécessitent un usinage de haute précision pour répondre aux exigences de conception.
Traitement des super alliages
Le traitement des superalliages est difficile et nécessite des outils et des procédés spéciaux pour manipuler ces matériaux durs.
Grandes pièces
Les pièces du vaisseau spatial sont généralement très volumineuses, nécessitant de grandes machines-outils CNC et des équipements de traitement spéciaux.
Contrôle de qualité
L'industrie aérospatiale est extrêmement exigeante en matière de qualité des pièces et exige un contrôle qualité et une inspection rigoureux pour garantir que chaque pièce répond aux normes.
Dans le traitement des pièces aérospatiales, la précision et la fiabilité sont essentielles. Une compréhension approfondie et une maîtrise fine des matériaux, des processus, de la précision et des difficultés d’usinage sont la clé de la fabrication de pièces aérospatiales de haute qualité.
1 Changement d'outil du magasin de type chapeauLe mode de changement d'outil à adresse fixe est principalement adopté et le numéro d'outil est fixe correspondant au numéro de siège d'outil. L'action de changement d'outil est réalisée par le mouvement latéral du magasin d'outils et le mouvement de haut en bas de la broche, appelé en abrégé mode de changement d'outil de broche. Comme il ne dispose pas de manipulateur de changement d'outil, l'action de sélection d'outil ne peut pas être présélectionnée avant l'action de changement d'outil. L'instruction de changement d'outil et l'instruction de sélection d'outil sont généralement écrites dans le même segment de programme et le format de l'instruction est le suivant : M06 T
Lorsque la commande est exécutée, le magasin d'outils tourne d'abord le porte-outil correspondant au numéro d'outil sur la broche vers la position de changement d'outil, puis remet l'outil sur la broche sur le porte-outil, puis le magasin d'outils fait tourner l'outil spécifié. dans la commande de changement de position d'outil et de changement de broche. Pour ce magasin d'outils, même si TX x est exécuté avant M06, l'outil ne peut pas être présélectionné, * l'action de sélection finale d'outil est toujours exécutée lorsque M06 est exécuté. S'il n'y a pas de TX X devant M06, le système émettra une alarme.2 Changement d'outil du magasin à disque et à chaîne
La plupart d'entre eux utilisent le mode de changement d'outil d'adresse aléatoire. La relation correspondante entre le numéro d'outil et le numéro de siège d'outil est aléatoire, mais sa relation correspondante peut être mémorisée par le système CN. Le changement d'outil de ce magasin d'outils dépend du manipulateur. L'action de la commande et du changement d'outil est la suivante : la commande d'outil TX contrôle la rotation du magasin d'outils et fait tourner l'outil sélectionné vers la position de travail de changement d'outil, tandis que la commande de changement d'outil M06 contrôle l'action du manipulateur de changement d'outil pour réaliser le échange d'outils entre l'outil de broche et la position de changement d'outil du magasin d'outils. La commande de sélection d'outil et la commande de changement d'outil peuvent se trouver dans le même segment de programme ou être écrites séparément. Les actions correspondant à la sélection d'outil et à la commande de changement d'outil peuvent également être exécutées simultanément ou séparément. Le format des instructions est le suivant:
Tx x M06 ; lorsque la commande est exécutée, le magasin d'outils tourne d'abord l'outil TX vers la position de changement d'outil, puis le manipulateur échange l'outil du magasin d'outils avec l'outil de la broche pour réaliser l'objectif de changement d'outil TX. à la broche. Après avoir lu les deux méthodes ci-dessus, on peut voir que la méthode 2 chevauche l'action de sélection d'outil avec l'action d'usinage, de sorte que lors du changement d'outil, il n'est pas nécessaire de sélectionner l'outil et de changer d'outil directement, ce qui améliore l'efficacité du travail.
Comme mentionné précédemment, la commande de changement d'outil du magasin d'outils est liée au fabricant de la machine-outil. Par exemple, certains magasins d'outils exigent que non seulement l'axe Z revienne au point de changement d'outil, mais que l'axe Y revienne également au point de changement d'outil. Le format du programme est le suivant:
Lors de l'écriture des instructions de sélection et de changement d'outil dans la même section de programme, les règles d'exécution des outils de différents fabricants peuvent également être différentes. Le cas échéant, quel que soit l’ordre d’écriture, les règles de sélection et de changement d’outil doivent être suivies. Certaines règles stipulent que la commande de sélection d'outil doit être écrite avant l'exécution de la commande de changement d'outil. Sinon, l'action consiste d'abord à changer d'outil, puis à sélectionner l'outil, comme indiqué dans le programme ci-dessus. Dans ce cas, si la commande de sélection d'outil n'est pas écrite avant l'exécution de la commande M06, le système émettra une alarme.
Le travail des métaux CNC remplace d’autres technologies de fabrication dans plusieurs secteurs. Le domaine médical est considéré comme un domaine où les erreurs sont rares, et les mêmes règles s'appliquent lorsqu'il s'agit de fabriquer des pièces médicales, car des vies humaines sont en jeu dans ce domaine, et même de petites erreurs peuvent entraîner de graves problèmes de santé, voire la mort. Par conséquent, les techniques d’usinage utilisées par les machinistes pour produire des pièces médicales doivent prendre en charge des tolérances strictes et des mesures de haute précision.
Le travail des métaux CNC gagne en popularité en raison de sa capacité à produire en masse des résultats détaillés et précis, ce qui a conduit à une augmentation du nombre de producteurs utilisant des machines CNC dans l'industrie.
L'usinage CNC est une méthode de fabrication dans laquelle le mouvement de l'outil est contrôlé par un logiciel informatique préprogrammé. Tous les produits médicaux peuvent être fabriqués avec précision et rapidité à l’aide du fraisage et du tournage CNC. Examinons les principaux avantages de la demande d'usinage CNC dans le secteur de la santé:
Pas d'outil fixe
L'usinage CNC est inégalé en termes de rapidité d'exécution et d'investissement minimal dans la production en petits lots, même pour les produits jetables. Les pièces destinées à l'industrie médicale doivent souvent être fabriquées rapidement et en petites séries. Dans le même temps, le travail des métaux CNC permet de fabriquer des pièces sans outils dédiés, ce qui peut prolonger le processus de fabrication tout en offrant une excellente qualité et précision même sans l'utilisation d'outils.
Aucune limite de quantité
Après avoir créé un fichier CAO numérique (conception assistée par ordinateur), vous pouvez facilement créer un programme de découpe à partir de celui-ci en appuyant simplement sur un bouton. L’application de codage peut fabriquer une seule pièce ou n’importe quel nombre de pièces avec la plus grande précision et exactitude. Il s’agit d’un avantage considérable lors de la création de pièces jetables ou personnalisées, telles que des dispositifs médicaux hautement spécialisés, des appareils, des équipements, des prothèses et d’autres produits médicaux ou chirurgicaux. D'autres procédures nécessitent une taille de commande minimale pour obtenir les matières premières requises, ce qui rend certains projets peu pratiques, tandis que l'usinage CNC n'exige pas de taille de commande minimale.
Haute tolérance
De nombreux types d’équipements médicaux nécessitent une large plage de tolérance, et avec les machines CNC, cela est facilement réalisable. La finition de surface est généralement très bonne et nécessite un post-traitement minimal, ce qui permet d'économiser du temps et de l'argent, mais ce n'est pas la considération la plus importante. En général, la chose la plus importante à retenir concernant les fournitures et équipements médicaux est qu’ils doivent être adaptés à leur usage, et tout écart par rapport aux normes peut entraîner un désastre.
Machine rapide
Les machines CNC sont plus rapides et peuvent fonctionner 24 heures sur 24, 365 jours par an. Hormis l’entretien de routine, les réparations et les mises à niveau sont les seuls moments où les fabricants cessent d’utiliser des équipements.
Les fichiers CAO numériques sont légers et flexibles
Les concepteurs de produits, les médecins spécialistes et les professionnels de la fabrication peuvent transférer rapidement et facilement des programmes numériques d'un endroit à un autre. La technologie améliore considérablement les capacités d'usinage CNC pour produire des dispositifs et des équipements médicaux spécialisés de haute qualité, quel que soit l'emplacement géographique, à tout moment et en tout lieu. Cette fonctionnalité de l’usinage CNC est très pratique, en particulier dans les environnements médicaux où le temps est critique.
L'usinage CNC a révolutionné la façon dont les dispositifs médicaux sont conçus, fabriqués, personnalisés et utilisés. La précision, la personnalisation et la rapidité de l'usinage CNC transforment les soins aux patients, permettant un traitement personnalisé et améliorant les résultats chirurgicaux.
La technologie ouvre la voie à des innovations révolutionnaires en matière de prothèses, d’appareils et de thérapies, et entraîne des progrès dans de nombreux domaines des soins de santé.
L'usinage CNC apporte de nombreux avantages au domaine médical, notamment:
Précision et exactitude
La précision de fonctionnement des machines-outils CNC est extrêmement élevée. Ce niveau de précision est essentiel pour la production d’instruments chirurgicaux, d’implants et de microdispositifs utilisés en chirurgie mini-invasive. La précision et la cohérence apportées par l'usinage CNC améliorent les performances lors des procédures médicales et réduisent le risque de complications.
Ceci est particulièrement important pour les chirurgiens qui s’appuient sur des instruments ultra-sophistiqués et fiables pour effectuer des tâches délicates. Des poignées de scalpel aux assistants chirurgicaux robotisés, l’usinage CNC fournit des outils de haute qualité qui améliorent la précision et la sécurité des patients.
Personnalisation et personnalisation
L'usinage CNC permet la création de pièces et de dispositifs médicaux personnalisés basés sur l'anatomie unique d'un patient. Cette capacité permet de créer des implants orthopédiques personnalisés, des prothèses dentaires, des aides auditives et d'autres appareils.
À l'aide de données spécifiques au patient telles que des scans 3D ou des images IRM, les machines CNC peuvent créer avec précision des éléments parfaitement adaptés au corps du patient. Cela améliore le confort, la fonction et l’efficacité du traitement, et accélère le rétablissement du patient.
Forme et structure complexes
L'usinage CNC peut produire des géométries et des structures internes complexes qui sont souvent difficiles à réaliser avec d'autres méthodes de fabrication. La capacité de sculpter avec précision des cavités internes, des canaux et des éléments délicats est particulièrement précieuse lors de la fabrication d'implants, de microdispositifs et d'instruments chirurgicaux.
Prototypage rapide
Le prototypage permet aux ingénieurs médicaux et aux concepteurs de créer des modèles fonctionnels de pièces et de dispositifs, leur permettant ainsi d'évaluer la conception, l'assemblage et la fonctionnalité avant de démarrer la production. La combinaison d'un logiciel de conception assistée par ordinateur (CAO) et de machines-outils CNC permet de traduire rapidement les conceptions numériques en prototypes physiques.
Cela permet des améliorations de conception itératives et contribue à garantir que les dispositifs médicaux sont minutieusement testés et optimisés avant leur commercialisation. Dans un domaine en évolution, le prototypage rapide peut renforcer l’innovation et contribuer à accélérer la commercialisation de nouvelles avancées médicales.
Optimisation du processus
L'intégration de l'usinage CNC avec des technologies avancées telles que l'automatisation et l'intelligence artificielle (IA) minimise les erreurs et permet des processus de contrôle qualité automatisés. Cela augmente l’efficacité, réduit le temps de production et améliore la qualité des produits, ce qui contribue à améliorer les résultats pour les patients.
De plus, les systèmes CNC automatisés peuvent fonctionner en continu avec une interaction homme-machine minimale entre les opérations. Certaines machines CNC sont également capables d'usiner sur plusieurs axes et d'effectuer des tâches sur différentes surfaces de pièces en même temps.
En reprogrammant les machines, les fabricants peuvent rapidement basculer entre la production d’un type de pièce et d’un autre. Cela réduit les temps de conversion et signifie que différentes pièces peuvent être fabriquées sur la même machine en une seule équipe. Ces fonctionnalités contribuent à accélérer les cycles de production, à réduire les temps d’arrêt et à augmenter la production globale.
Sélection de matériaux flexible
L'usinage CNC convient à une large gamme de matériaux, notamment les métaux, les plastiques et les composites. Cette polyvalence permet aux fabricants de prendre en compte des facteurs tels que la biocompatibilité, la durabilité et la fonctionnalité pour sélectionner le matériau le plus approprié pour une application médicale spécifique.
Réduction des coûts
Bien que les machines CNC industrielles puissent être coûteuses, elles offrent d’importantes opportunités de réduction des coûts à long terme. En éliminant le besoin de gabarits, de fixations et d'outils dédiés pour chaque pièce, l'usinage CNC permet de minimiser le temps de configuration, de simplifier la production et de réduire les coûts de fabrication.
La technologie réduit également les déchets et les coûts grâce à l’optimisation des matériaux. Ceci est particulièrement important dans le domaine médical, car les implants sont souvent fabriqués avec des matériaux de grande valeur tels que le titane et le platine. L'efficacité et la productivité accrues de l'usinage CNC contribuent également à des économies de coûts au fil du temps.
En raison de la nature critique des dispositifs et composants médicaux, l’industrie médicale nécessite des produits de haute qualité et de haute précision. Par conséquent, l’usinage CNC est largement utilisé dans les applications médicales. Ci-dessous, nous présenterons ce que sont les produits médicaux d'usinage CNC ?
1. Implants médicaux
Implants orthopédiques : l'usinage CNC est couramment utilisé pour fabriquer des implants orthopédiques, tels que les arthroplasties de la hanche et du genou.
Implants dentaires : utilisez l'usinage CNC pour fabriquer des implants dentaires précis et personnalisés.
2. Équipement médical électronique
Composants IRM : certains composants des machines d'imagerie par résonance magnétique (IRM), tels que les structures, les supports et les boîtiers, sont souvent usinés à l'aide de CNC.
Boîtiers d'équipement de diagnostic : l'usinage CNC est utilisé pour fabriquer des boîtiers et des boîtiers pour une large gamme d'équipements de diagnostic médical, garantissant des dimensions précises, une durabilité et une compatibilité avec les composants électroniques.
3. Instruments chirurgicaux médicaux
Scalpels et lames : L’usinage CNC est utilisé pour produire des instruments chirurgicaux tels que des scalpels et des lames.
Pincettes et pinces : Les instruments chirurgicaux de conception complexe, tels que les pinces et les pinces, sont généralement usinés CNC pour obtenir la précision souhaitée.
4. Prothèses et orthèses
Composants prothétiques personnalisés : l'usinage CNC est utilisé pour fabriquer des composants prothétiques personnalisés, notamment des composants de chambre d'acceptation, des joints et des connecteurs.
Supports orthopédiques : les composants des supports orthopédiques qui assurent le soutien et l'alignement de diverses parties du corps peuvent être usinés CNC.
5. Assemblage d'endoscope
Boîtiers et pièces d'endoscope : l'usinage CNC est utilisé pour produire des pièces d'équipement d'endoscope, notamment des boîtiers, des connecteurs et des pièces structurelles.
6. Matériel médical prototype
Composants de prototypage : l'usinage CNC est largement utilisé pour le prototypage rapide de divers dispositifs médicaux.
F finalement, m L’usinage de dispositifs médicaux est un processus qui nécessite un haut niveau de précision et d’exactitude. Cette technologie est donc très adaptée à l’usinage CNC.
Précision Honscn est un fabricant fiable de composants médicalement critiques pour les instruments et outils chirurgicaux ainsi que pour le prototypage de dispositifs médicaux . Avec 20 ans d’expérience dans la fabrication CNC, nous sommes motivés par la nécessité de garantir les tolérances et la précision les plus strictes pour chaque pièce usinée. Nos mécaniciens qualifiés peuvent adapter la conception de pièces usinées aux normes les plus élevées pour tous les aspects de l’industrie médicale. Vous souhaitez démarrer votre projet d’usinage CNC chez Honscn Precision ? Cliquez ici pour démarrer votre service personnalisé
Contacter: Ada Li
Tel:86 17722440307
WhatsApp:86 17722440307
Courriel: Ada@honscn.com
Ajouter : 4F, Non. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, Chine