Неизменность, постоянство и стабильность — вот три отзыва, которые детали, обработанные на станках с ЧПУ, получили от своих покупателей, что свидетельствует о твердой решимости и настойчивости компании Honscn Co.,Ltd в стремлении к высочайшим стандартам качества. Продукт производится на первоклассной производственной линии, так что его материалы и мастерство обладают более высоким качеством, чем у наших конкурентов.
HONSCN фокусирует стратегию нашего бренда на технологических прорывах в условиях растущей потребности рынка в развитии и инновациях. По мере того, как наша технология развивается и обновляется в зависимости от того, как люди думают и потребляют, мы добились быстрого прогресса в увеличении продаж на рынке и поддержании более стабильных и долгосрочных отношений с нашими стратегическими партнерами и клиентами.
Мы еще больше углубляем сотрудничество с клиентами, поставляя высококачественную продукцию и гарантируя полное обслуживание. Детали, обработанные на станке с ЧПУ, могут быть изготовлены по индивидуальному заказу в зависимости от их размера и дизайна. Клиенты могут связаться с нами по электронной почте.
Shenzhen Honscn является профессиональным производителем деталей станков с ЧПУ, деталей токарных станков и винтовых креплений. Мы предлагаем услуги OEM и ODM с любыми сопутствующими продуктами для клиентов. У нас есть профессиональная команда разработчиков продукции и инженеров, а также профессиональная команда контроля качества, наши отделы продаж, документации и логистики могут выполнить требования по представлению документов при различных способах оплаты и различных видах транспортировки.
Обычно мы можем предоставить 3D-чертежи/чертежи, количество, необходимые производственные процессы и материалы в соответствии с требованиями заказчика. Наши инженеры внимательно просмотрят и прочитают их, а также предоставят ценовые предложения. Если клиенты потребуют этого, мы также предоставим образцы в соответствии с их требованиями.
Если предложение подтверждено, перед размещением заказа заказчику необходимо предоставить сертификат заводских испытаний этого продукта, соответствующий стандартам ЕС, таким как CE, RoHS, REACH. Вся наша продукция соответствует всем европейским сертификатам, таким как CE, RoHS, REACH и т. д., и все они подготовили стандартные документы для проверки клиентами.
После того как заказчик подтвердит заказ, ему предлагают изготовить его по своему образцу. Мы сделаем это на основе образцов, которые он нам прислал.
Мы начинаем готовить материалы для заказа, когда клиент подтверждает все детали, такие как материал, размер, допуск, качество поверхности и другие детали окончательного образца.
После упаковки, такой как количество, этикетка, отметка доставки и т. д. предоставляются клиентом, мы начинаем организовать массовое производство. После того, как все товары будут готовы, отправьте фотографии клиенту на утверждение. Мы обещаем, что упаковка такая же, как просил клиент, массовая продукция точно такая же, как окончательные образцы. На следующих фотографиях груза степень прохождения сторонней проверки нашей компании составляет 100%.
После того, как клиент получит образец, он нанесет наш продукт на станочное оборудование для сборки аксессуаров. Обеспечение плавной сборки машины. Мы всегда уделяем большое внимание качеству нашей продукции, которое признается клиентами и постоянно покупается повторно.
Благодаря постоянному развитию технологий у потребителей возникают различные индивидуальные потребности, требования к настройке продолжают улучшаться, потребителям необходимо настраивать профессиональные запасные части в соответствии со своими потребностями и предпочтениями, если это может быть достигнуто, это значительно увеличит доброжелательность клиентов, предприятия также могут продолжать повышать свою известность. Таким образом, услуги по индивидуальной обработке с ЧПУ также играют важную роль в производстве.
Применение услуг по индивидуальной обработке с ЧПУ в области автомобильной автоматизации также дало замечательные результаты. Возьмем, к примеру, нашу компанию: мы предоставляем комплексные индивидуальные производственные услуги с ЧПУ, располагая современным оборудованием и технической командой, предоставляя высококачественные услуги по обработке деталей для многих известных производителей автомобилей и завоевывая расположение партнеров.
Короче говоря, применение услуг индивидуальной обработки с ЧПУ в области автомобильной автоматизации постепенно меняет структуру традиционного производства. Для индивидуальных услуг по производству с ЧПУ, пожалуйста, выберите нас, и мы предоставим вам услуги самого высокого качества и по наиболее конкурентоспособной цене. Давайте вместе способствовать инновациям и развитию автомобильной промышленности!
Успех или неудача аэрокосмических операций зависит от точности, прецизионности и качества используемых компонентов. По этой причине аэрокосмические компании используют передовые производственные технологии и процессы, чтобы гарантировать, что их компоненты полностью отвечают их потребностям. В то время как новые методы производства, такие как 3D-печать, быстро набирают популярность в отрасли, традиционные методы производства, такие как механическая обработка, продолжают играть ключевую роль в производстве деталей и изделий для аэрокосмической отрасли. Такие как улучшенные программы CAM, станки для конкретных приложений, улучшенные материалы и покрытия, а также улучшенный контроль стружки и гашение вибраций - существенно изменили способы производства критически важных авиационных компонентов аэрокосмическими компаниями. Однако одного только сложного оборудования недостаточно. Производители должны обладать опытом, позволяющим решать проблемы обработки материалов в аэрокосмической промышленности.
Производство аэрокосмических деталей в первую очередь требует особых требований к материалам. Эти детали обычно требуют высокой прочности, низкой плотности, высокой термической стабильности и коррозионной стойкости для работы в экстремальных условиях эксплуатации.
К распространенным аэрокосмическим материалам относятся:
1. Высокопрочный алюминиевый сплав
Высокопрочные алюминиевые сплавы идеально подходят для изготовления деталей конструкции самолетов из-за их легкого веса, коррозионной стойкости и простоты обработки. Например, алюминиевый сплав 7075 широко используется при производстве деталей аэрокосмической отрасли.
2. титановый сплав
Титановые сплавы имеют превосходное соотношение прочности и веса и широко используются в деталях авиационных двигателей, компонентах фюзеляжа и винтах.
3. Суперсплав
Суперсплавы сохраняют прочность и стабильность при высоких температурах и подходят для сопел двигателей, лопаток турбин и других высокотемпературных деталей.
4. Композитный материал
Композиты из углеродного волокна хорошо снижают вес конструкции, повышают прочность и уменьшают коррозию и обычно используются при производстве корпусов аэрокосмических деталей и компонентов космических кораблей.
Планирование и проектирование процессов
Перед обработкой необходимо планирование и проектирование процесса. На этом этапе необходимо определить общую схему обработки согласно конструктивным требованиям детали и характеристикам материала. Сюда входит определение процесса обработки, выбор станочного оборудования, подбор инструмента и т. д. При этом необходимо выполнить детальное проектирование процесса, включая определение профиля резания, глубины резания, скорости резания и других параметров.
Подготовка материала и процесс резки
В процессе обработки деталей авиакосмической промышленности в первую очередь необходимо подготовить рабочие материалы. Обычно материалы, используемые в авиационных деталях, включают высокопрочную легированную сталь, нержавеющую сталь, алюминиевый сплав и так далее. После завершения подготовки материала приступают к процессу резки.
Этот этап включает в себя выбор станков, таких как станки с ЧПУ, токарные станки, фрезерные станки и т. д., а также выбор режущих инструментов. В процессе резки необходимо строго контролировать скорость подачи, скорость резания, глубину резания и другие параметры инструмента, чтобы обеспечить точность размеров и качество поверхности деталей.
Прецизионный процесс механической обработки
Компоненты аэрокосмической отрасли обычно очень требовательны к размеру и качеству поверхности, поэтому прецизионная обработка является обязательным шагом. На этом этапе может возникнуть необходимость в использовании высокоточных процессов, таких как шлифование и электроэрозионная обработка. Целью процесса прецизионной обработки является дальнейшее улучшение точности размеров и качества поверхности деталей, обеспечивая их надежность и стабильность в авиационной сфере.
Термическая обработка
Некоторые детали аэрокосмической отрасли могут потребовать термической обработки после точной механической обработки. Процесс термообработки может улучшить твердость, прочность и коррозионную стойкость деталей. Сюда входят такие методы термообработки, как закалка и отпуск, которые выбираются в соответствии с конкретными требованиями к деталям.
Покрытие поверхности
Для повышения износостойкости и коррозионной стойкости авиационных деталей обычно требуется покрытие поверхности. Материалы покрытия могут включать цементированный карбид, керамическое покрытие и т. д. Поверхностные покрытия позволяют не только улучшить эксплуатационные характеристики деталей, но и продлить срок их службы.
Сборка и тестирование
Выполните сборку и проверку деталей. На этом этапе детали необходимо собрать в соответствии с требованиями конструкции, чтобы обеспечить точность соответствия между различными деталями. В то же время необходимы строгие испытания, включая испытания размеров, испытания качества поверхности, испытания состава материала и т. д., чтобы гарантировать соответствие деталей стандартам авиационной промышленности.
Строгий контроль качества: Требования к контролю качества авиационных деталей очень строгие, и на каждом этапе обработки авиационных деталей требуются строгие испытания и контроль, чтобы гарантировать, что качество деталей соответствует стандартам.
Высокие требования к точности: Компоненты аэрокосмической отрасли обычно требуют очень высокой точности, включая точность размеров, точности формы и качества поверхности. Поэтому в процессе обработки необходимо использовать высокоточные станки и инструменты, чтобы гарантировать соответствие деталей проектным требованиям.
Сложная конструкция конструкции: Авиационные детали часто имеют сложную конструкцию, и для удовлетворения потребностей в обработке сложных конструкций необходимо использовать многоосные станки с ЧПУ и другое оборудование.
Высокая термостойкость и высокая прочность: Авиационные детали обычно работают в суровых условиях, таких как высокая температура и высокое давление, поэтому необходимо выбирать материалы, устойчивые к высоким температурам и высокой прочности, а также проводить соответствующий процесс термообработки.
В целом, обработка деталей для аэрокосмической отрасли — это высокотехнологичный и требовательный к точности процесс, который требует строгих рабочих процессов и современного технологического оборудования, чтобы гарантировать, что качество и производительность конечных деталей могут соответствовать строгим требованиям авиационного сектора.
Обработка деталей для аэрокосмической отрасли является сложной задачей, главным образом в следующих областях::
Сложная геометрия
Детали аэрокосмической отрасли часто имеют сложную геометрическую форму, требующую высокоточной механической обработки для удовлетворения проектных требований.
Обработка суперсплавов
Обработка суперсплавов сложна и требует специальных инструментов и процессов для обработки этих твердых материалов.
Крупные детали
Части космического корабля обычно очень большие, для их изготовления требуются большие станки с ЧПУ и специальное технологическое оборудование.
Контроль качества
Аэрокосмическая промышленность чрезвычайно требовательна к качеству деталей и требует строгого контроля качества и проверки, чтобы гарантировать соответствие каждой детали стандартам.
При обработке деталей аэрокосмической промышленности точность и надежность являются ключевыми факторами. Глубокое понимание и точный контроль материалов, процессов, точности и трудностей обработки являются ключом к производству высококачественных деталей для аэрокосмической промышленности.
Требования к легкости, безопасности и декоративности в современной автомобильной промышленности стимулируют развитие традиционных технологий сварки в области автомобильных пластмасс. В последние годы благодаря применению различных высокотехнологичных технологий, таких как ультразвуковые, вибро-трение и лазерные технологии в области производства автомобильных пластиковых деталей, технический уровень и вспомогательные возможности отечественной промышленности по производству автомобильных деталей значительно улучшились. Что касается процесса сварки и сварки деталей салона автомобиля, сварки горячей пластиной, лазерной сварки, ультразвуковой сварки, нестандартного ультразвукового сварочного аппарата, вибрационного фрикционного аппарата и т. д. были разработаны. При этом может быть реализована однократная сварка всей или сложной конструкции, а оптимальные требования к проектированию могут быть достигнуты на основе упрощения конструкции пресс-формы и снижения затрат на формование. Для типичных деталей внутренней и внешней отделки большие компоненты с высоким качеством поверхности и сложные конструкции, такие как приборная панель, дверная панель, колонка, перчаточный ящик, впускной коллектор двигателя, передний и задний бампер, должны выбирать соответствующую технологию сварки и применять соответствующий процесс сварки в соответствии с требованиями внутренней конструкции, производительности, материалов и производства. расходы. Все эти применения позволяют не только завершить соответствующий производственный процесс, но и обеспечить отличное качество и идеальную форму изделий.
Сварочная машина с горячей пластиной: оборудование сварочной машины с горячей пластиной может контролировать горизонтальное или вертикальное движение сварочной матрицы с горячей пластиной, а система передачи приводится в движение пневматическим, гидравлическим приводом или серводвигателем. Преимущества технологии сварки горячей пластиной заключаются в том, что ее можно применять к заготовкам разных размеров без ограничения площади, применимо к любой сварочной поверхности, что позволяет компенсировать припуски на пластику, обеспечивать прочность сварки и корректировать процедуры сварки в соответствии с потребностями различных материалов (например, например, регулировка температуры сварки, времени сварки, времени охлаждения, давления входного воздуха, температуры сварки, времени переключения и т. д.), в процессе сварки оборудование может поддерживать хорошую стабильность, обеспечивать стабильный сварочный эффект и точность высоты заготовки после обработки.
Еще одной особенностью горизонтального сварочного аппарата является то, что он может вращаться на 90 градусов для очистки. Период обработки сварочного аппарата с горячей пластиной обычно можно разделить на: исходное положение (горячая пластина не перемещается вместе с верхней и нижней формами), период нагрева (горячая пластина перемещается между верхней и нижней формами и нагрев горячая плита перемещается вниз по верхней и нижней формам для растворения сварочных поверхностей верхней и нижней заготовок), период переноса (верхняя и нижняя формы возвращаются в исходное положение, а горячая плита выходит), период сварки и охлаждения (верхняя и нижние штампы соединяются, чтобы заготовка была сварена одновременно и охлаждена для формовки), и возвращаются в исходное положение (верхний и нижний штампы разделяются, и свариваемую заготовку можно вынуть).
В раннем автомобилестроении данное сварочное оборудование было относительно распространено, но с постоянным совершенствованием требований к конструкции, форме и сроку службы самих деталей требования к оборудованию для их обработки все выше и выше. Более того, поскольку размер оборудования ограничен размером свариваемых деталей, режим работы оборудования и режима работы оборудования следует выбирать в соответствии с размером деталей в конструкции. Самое главное - это детали. Площадь нагрева большая и наблюдается большая деформация. Кроме того, в процессе сварки различают полярность и неполярность свариваемых пластмасс, в результате чего происходит постепенная замена сварки горячей пластиной ультразвуковой сваркой и лазерной сваркой. Основные детали, используемые для сварки в Китае, включают автомобильный пластиковый топливный бак, аккумулятор, задний фонарь, перчаточный ящик и т. д.
Лазерная сварка: технология лазерной сварки широко используется в современной промышленности по производству медицинского оборудования. Лишь немногие производители в автомобильной промышленности используют воздухозаборные трубы для лазерной сварки и т. д. поскольку это новая технология сварки, она в определенной степени еще не очень развита, но считается, что она будет широко использоваться в ближайшем будущем из-за ее замечательных сварочных характеристик. Его преимущество в том, что он может сваривать изделия из ТПЭ/ТП или ТПЭ; при условии отсутствия вибрации можно сваривать нейлон, детали с чувствительными электронными деталями и трехмерную сварочную поверхность, что позволяет сэкономить затраты и уменьшить количество отходов.
В процессе сварки смола плавится меньше, поверхность сваривается плотно, не возникает заусенцев и переливов клея. Допускается сварка жестких пластиковых деталей без перелива клея и вибрации. Как правило, детали с мягкими или неровными сварочными поверхностями можно сваривать равномерно независимо от их размеров, особенно при крупносерийном производстве высокотехнологичных микродеталей. Однако проводимость лазера ограничена. Технология «квазисинхронной» лазерной сварки использует сканирующее зеркало для передачи лазерного луча на сварочную поверхность со скоростью 10 м/с в зависимости от формы сварки. Он может пройти по сварочной поверхности до 40 раз за 1 секунду. Пластик вокруг сварочной поверхности плавится, и после приложения давления две заготовки свариваются.
Лазерную сварку можно грубо разделить на: твердую систему Nd-YAG (лазерный луч генерируется кристаллом) и диодную систему (диодный лазер высокой мощности), программирование данных САПР. Все материалы можно сваривать лазером с корпусными материалами, среди которых акрилонитрил-бутадиен-стирол наиболее пригоден для лазерной сварки с другими материалами, нейлон, полипропилен и полиэтилен можно сваривать только с собственными корпусными материалами, а другие материалы имеют общую применимость для лазерной сварки. fqj
Контакт: Ада Ли
Тел:86 17722440307
Ватсап: +86 17722440307
Электронная почта: Ada@honscn.com
Добавить: 4F, №. 41 Huangdang Road, Luowuwei Industrial, улица Даланг, Лунхуа, Шэньчжэнь, 518109, Китай