Инновации, мастерство и эстетика сочетаются в этих потрясающих деталях с ЧПУ, изготовленных по индивидуальному заказу. В Honscn Co.,Ltd есть специальная группа дизайнеров, которая постоянно совершенствует дизайн продукта, позволяя продукту всегда соответствовать последним рыночным требованиям. При производстве будут использоваться только материалы высочайшего качества, и многие тесты производительности продукта будут проводиться после производства. Все это в значительной степени способствует росту популярности этого продукта.
HONSCN С момента запуска продукты получили множество положительных отзывов. Благодаря своей высокой производительности и конкурентоспособной цене они хорошо продаются на рынке и привлекают больше клиентов по всему миру. И большинство наших целевых клиентов совершают повторные покупки у нас, потому что они добились роста продаж и дополнительных преимуществ, а также большего влияния на рынке.
В Honscn клиентам не нужно беспокоиться о транспортировке таких продуктов, как детали для обработки на станках с ЧПУ. Сотрудничая с надежными логистическими компаниями, мы гарантируем, что груз будет доставлен в целости и сохранности.
Ни одна машина не может быть изготовлена без отверстий. Для соединения деталей между собой требуются отверстия для винтов, штифтов или заклепок разных размеров; Для того чтобы зафиксировать детали трансмиссии, необходимы различные крепежные отверстия; Сами детали машины также имеют множество типов отверстий (например, отверстия для масла, технологические отверстия, отверстия для снижения веса и т. д.). Операцию обработки отверстий таким образом, чтобы отверстия соответствовали требованиям, называют обработкой отверстий.
Поверхность внутреннего отверстия является одной из важных поверхностей механических деталей. В механических деталях детали с отверстиями обычно составляют от 50% до 80% от общего количества деталей. Типы отверстий также разнообразны: бывают цилиндрические, конические, резьбовые и фасонные. Обычные цилиндрические отверстия делятся на общие отверстия и глубокие отверстия, причем глубокие отверстия трудно обрабатывать.
1. Прежде всего, разница между U-сверлом и обычным сверлом заключается в том, что U-сверло использует периферийное лезвие и центральное лезвие, под этим углом взаимосвязь между U-сверлом и обычным твердым сверлом на самом деле аналогична взаимосвязи между зажимным токарным инструментом. и сварочно-токарный инструмент, а лезвие можно заменить сразу после износа инструмента без переточки. В конце концов, использование сменных лезвий по-прежнему экономит материал, чем твердое сверло, а консистенция лезвия облегчает контроль размера детали.
2. Жесткость U-сверла выше, вы можете использовать высокую скорость подачи, а диаметр обработки U-сверла намного больше, чем у обычного сверла, максимум может достигать D50 ~ 60 мм, конечно, U-сверло не может быть слишком маленьким. из-за особенностей лезвия.
3. Сверло, сталкивающееся с различными материалами, требует только замены одного и того же типа лезвия разных классов, твердое сверло не так удобно.
4. По сравнению с твердым сверлением точность отверстия, просверленного U-сверлением, все еще выше, а качество отделки лучше, особенно когда охлаждение и смазка не являются гладкими, это более очевидно, и U-сверление может исправить точность положения отверстия. И жесткое сверление невозможно сделать, а U-образное сверление можно использовать в качестве сверлильного ножа.
1. U-сверло позволяет пробивать отверстия на поверхностях с углом наклона менее 30° без снижения параметров резания.
2. После того, как параметры резания U-образного сверления уменьшаются на 30%, можно достичь прерывистой резки, такой как обработка пересекающихся отверстий, пересекающихся отверстий и фазовой перфорации.
3. U-сверление позволяет осуществлять сверление многоступенчатых отверстий, а также растачивание, фаску, эксцентриковое сверление.
4. При сверлении стружка при сверлении в основном представляет собой короткую стружку, а внутреннюю систему охлаждения можно использовать для безопасного удаления стружки без очистки стружки на инструменте, что способствует непрерывности обработки продукта, сокращает время обработки и повысить эффективность.
5. При условии стандартного соотношения длины и диаметра при сверлении U-образным сверлом удаление стружки не требуется.
6. U-образное сверло для сменного инструмента, износ лезвия без заточки, более удобная замена и низкая стоимость.
7. Значение шероховатости поверхности отверстия, обработанного U-сверлением, невелико, а диапазон допуска невелик, что может заменить работу некоторых расточных инструментов.
8. Использование U-образного сверления не требует предварительной пробивки центрального отверстия, а обрабатываемая нижняя поверхность глухого отверстия является относительно прямой, что исключает необходимость сверла с плоским дном.
9. Использование технологии сверления U может не только уменьшить количество сверлильных инструментов, а поскольку сверление U представляет собой головку лезвия из цементированного карбида, его срок службы более чем в десять раз превышает срок службы обычного сверла, в то же время на станке имеется четыре режущие кромки. лезвие, износ лезвия можно заменить в любой момент резки, новая резка экономит время на шлифовку и замену инструмента, может повысить среднюю эффективность в 6-7 раз.
1. При использовании U-сверла жесткость станка и нейтральность инструмента и заготовки высоки, поэтому U-сверло подходит для использования на мощных, высокожестких и высокоскоростных станках с ЧПУ.
2. При использовании U-образного сверления центральное лезвие следует использовать с хорошей прочностью, а периферийное лезвие следует использовать с относительно острыми лезвиями.
3. При обработке различных материалов следует выбирать другое лезвие с канавкой, при нормальных обстоятельствах небольшая подача, малый допуск, соотношение длины сверления U к диаметру, выбирать лезвие с канавкой с меньшей силой резания, наоборот, грубая обработка, большой допуск, длина сверления U. Соотношение диаметров невелико, тогда выберите лезвие с канавкой с большей силой резания.
4. При использовании сверления U мы должны учитывать мощность шпинделя станка, стабильность зажима сверления U, давление и поток смазочно-охлаждающей жидкости, а также контролировать эффект удаления стружки при сверлении U, в противном случае это сильно повлияет на шероховатость поверхности и точность размеров отверстия.
5. При установке U-сверла необходимо, чтобы центр U-сверла совпадал с центром заготовки и был перпендикулярен поверхности заготовки.
6. При использовании U-образного сверления соответствующие параметры резки следует выбирать в соответствии с различными материалами деталей.
7. При пробном сверлении не снижайте подачу или скорость произвольно из-за осторожности и страха, чтобы не повредить лезвие U-образного сверла или U-образное сверло.
8. При использовании U-образной обработки, когда лезвие изношено или повреждено, необходимо тщательно проанализировать причины и заменить лезвие на более прочное или более износостойкое.
9. При использовании U-сверла для обработки ступенчатых отверстий необходимо начинать обработку с больших отверстий, а затем обрабатывать мелкие отверстия.
10. При сверлении обратите внимание на то, чтобы смазочно-охлаждающая жидкость имела достаточное давление для вымывания стружки.
11. Лезвия, используемые в центре и на краю U-образного сверла, различаются, их нельзя использовать неправильно, иначе это приведет к повреждению U-сверлильного стержня.
12. При сверлении U-образной дрелью можно использовать вращение заготовки, вращение инструмента и одновременное вращение инструмента и заготовки, но когда инструмент перемещается в режиме линейной подачи, наиболее распространенным методом является использование режима вращения заготовки.
13. При обработке на станке с ЧПУ следует учитывать производительность токарного станка и соответствующим образом регулировать параметры резания, обычно снижая скорость и низкую подачу.
1. Лезвие повреждается слишком быстро, его легко сломать, а стоимость обработки увеличивается.
2. Во время обработки раздается резкий свист, а состояние резки является ненормальным.
3. Дрожание станка, влияющее на точность обработки станков.
1. При установке U-сверла следует обратить внимание на положительные и отрицательные направления: какое лезвие вверх, какое вниз, какое внутрь, а какое наружу.
2. Высота центра U-образного сверления должна быть скорректирована в соответствии с размером его диаметра, чтобы обеспечить диапазон регулирования, обычно контролируемый в пределах 0,1 мм. Чем меньше диаметр U-образного сверления, тем выше требования к высоте центра, высота центра не является хорошей U-образным сверлением. две стороны будут изнашиваться, отверстие будет больше, срок службы лезвия сократится, маленькое U-образное отверстие легко сломать.
3. U-сверло предъявляет очень высокие требования к охлаждающей жидкости, необходимо обеспечить, чтобы охлаждающая жидкость выходила из центра U-сверла, чем больше давление охлаждающей жидкости, тем лучше, выход избыточной воды из башни можно заблокировать, чтобы обеспечить ее давление.
4, U параметры сверления и резки в строгом соответствии с инструкциями производителя, а также учитывать различные марки лезвий, мощность машины, обработку, можно отнести к значению нагрузки размера станка, вносить соответствующие корректировки, как правило, с использованием высокой скорости и низкой подачи. .
5.U сверло для частой проверки, своевременная замена, различные лезвия не могут быть установлены в обратном направлении.
6. В зависимости от твердости заготовки и длины подвески инструмента для регулировки величины подачи, чем тверже заготовка, тем больше подвеска инструмента, тем меньше объем резания.
7. Не используйте чрезмерный износ лезвия, при производстве следует учитывать износ лезвия и соотношение между количеством обрабатываемых деталей, своевременную замену новых лезвий.
8. Используйте достаточное количество внутренней охлаждающей жидкости с правильным давлением. Основная функция СОЖ – удаление стружки и охлаждение.
9. Сверло U нельзя использовать для обработки более мягких материалов, таких как медь, мягкий алюминий и т. д.
Honscn имеет более чем десятилетний опыт обработки станков с ЧПУ, специализируясь на обработке деталей с ЧПУ, обработке механических деталей оборудования, обработке деталей оборудования автоматизации. Обработка деталей роботов, обработка деталей БПЛА, обработка деталей велосипедов, обработка медицинских деталей и т. д. Это один из высококачественных поставщиков станков с ЧПУ. В настоящее время компания имеет более 50 комплектов обрабатывающих центров с ЧПУ, шлифовальных станков, фрезерных станков, высококачественного высокоточного испытательного оборудования, чтобы предоставить клиентам прецизионные и высококачественные услуги по обработке запасных частей с ЧПУ.
«Обработка на станках с ЧПУ часто имеет множество преимуществ. С точки зрения автомобильной, аэрокосмической и потребительской промышленности он широко используется при производстве компонентов в этих областях. И в каком-то смысле он имеет свойства, схожие с металлом».
Полиформальдегид, или ПОМ, — это интересная пластиковая смола, которая широко используется в различных областях промышленности. Аэрокосмическая, автомобильная и электронная промышленность являются важными потребителями этого полимера. Переработка полиформальдегида, особенно при его использовании в производственной сфере, позволяет добиться быстрой и эффективной переработки. Кроме того, он приносит пользу пользователям благодаря своей высокой механической прочности, жесткости, обрабатываемости и разнообразию вариантов сплавов.
Эта статья содержит следующие ключевые детали обработки ПОМ с ЧПУ, а также его основные характеристики с точки зрения функций, применения, преимуществ и т. д. Let и приступайте к работе.
ПОМ, гомополимер, также известен как Делрин. Он широко применяется в качестве термопластика инженерного качества для изготовления прототипов для промышленного использования. Обычно он бывает двух форм: сополимеры или гомополимеры. От сложных прототипов до гибких деталей машин — это приносит экономическую выгоду производству.
Дизайнеры продукции могут извлечь выгоду из его структурной целостности, разнообразия цветов и характеристик жесткости. Кроме того, его надежность и устойчивость во влажной среде делают его пригодным для морского, медицинского и аэрокосмического применения. POM обычно имеет другое имя, например; Ацеталь (ацеталь), полиацеталь (полиацеталь), полиформальдегид и др.
ПОМ-формальдегид или полиацеталь имеют значительные преимущества при использовании в механической обработке. Воспользуйтесь преимуществами передовых технологий, таких как прецизионная обработка POM или обработка с ЧПУ; Например; Фрезерование, сверление, штамповка и штамповка. Кроме того, его универсальность в различных сплавах очень полезна для специалистов по механической обработке. Делрин также совместим с передовыми технологиями резки; Примеры включают процессы лазерной резки и экструзии.
Некоторые из основных особенностей обработки с ЧПУ включают в себя::
Обработка пластика на станке с ЧПУ может осуществляться с помощью различных технологий; Например; Фрезерование с ЧПУ, сверление с ЧПУ, токарные станки, шлифование, вырубка и штамповка. Простота обработки существенно влияет на его использование в этих процессах. Кроме того, он также привлек много внимания из-за своего высокого удлинения. Теперь давайте обсудим метод получения наилучших результатов при обработке POM на станке с ЧПУ.
Процесс начинается с компьютерного проектирования и программирования для повышения точности, качества и уровня оптимизации. После виртуальной конфигурации инструкции передаются на станок с ЧПУ в следующем виде:: G-код для дальнейшей обработки перспектив
Затем на материале заготовки (ПОМ) выполняется операция резки для получения оптимальных размеров и размеров. Рекомендуется использовать СОЖ при обработке делрина на высокой скорости, чтобы предотвратить неэффективные операции обработки, такие как скопление стружки или перегрев.
Ниже приведены некоторые методы, обычно используемые для обработки. сильный полиформальдегид или ПОМ.
1. POM фрезерный станок с ЧПУ
Фрезерование с ЧПУ часто используется для обработки деталей из ПОМ. Инструменты с острыми краями помогают получить лучший угол, а также качество поверхности. Поэтому для обработки делрина целесообразно использовать однощелевую фрезу. Эти фрезы предотвращают накопление стружки во время обработки.
2.POM сверление с ЧПУ
Стандартные спиральные и центровые сверла лучше всего подходят для обработки полиформальдегидных смол. Эти материалы имеют прочные, заостренные края, что в конечном итоге обеспечивает плавное фрезерование делрина. Оптимальная скорость резания просверленного ПОМ должна составлять примерно 1500 об/мин, а угол скручивания кромки 118°.
3.POM токарная обработка с ЧПУ
Операция токарной обработки POM на станке с ЧПУ аналогична операции токарной обработки латуни. Наилучших результатов можно достичь, поддерживая высокую скорость вращения на той же скорости, что и среднюю скорость подачи. Чтобы предотвратить помехи и проблемы с чрезмерным накоплением стружки, при прецизионной токарной обработке необходимо использовать стружколом.
4. Заготовка и перфорация
Вырубка и штамповка — оба метода предпочтительны для сложных деталей малого и среднего размера. В процессе эксплуатации трещины на листе могут привести к серьезным проблемам при неправильной обработке. Чтобы устранить эту проблему, лучше всего предварительно нагреть пластину Делрина и воспользоваться ручным или высоким перфоратором.
Основные моменты: «Во время обработки POM на станке с ЧПУ важно удерживать POM плотно или удерживать POM и использовать инструмент из твердой стали или твердого сплава.
Два наиболее распространенных сорта ацеталя очень полезны для обработки на станках с ЧПУ; Смола полиформальдегидная 150, смола полиформальдегидная; 100 (АФ). Давайте оценим их совместимость;
1. Делрин 150
Дерлин 150 принадлежит к семейству ацеталевых гомополимеров. Он обладает высокой механической прочностью, жесткостью и износостойкостью. Благодаря этим уникальным характеристикам он идеально подходит для обработки на станках с ЧПУ шестерен, втулок, прокладок, а также для внутренней и внешней отделки автомобилей. Кроме того, его стабильность в условиях высоких температур делает его идеальным для оросительных и конвейерных частей.
2. Делрин 100(А)
Делрин 100 А объединен с политетрафторэтиленом (ПТФЭ) для повышения механической стабильности и вязкости. Он широко используется в зубчатых системах или компонентах, требующих низкого коэффициента трения. Кроме того, он обладает сильной влаго- и химической стойкостью. Кроме того, он устраняет самосмазывающиеся свойства (масло или смазка), что отличает его от других марок делрина.
Желаемая чистота поверхности играет ключевую роль в процессе обработки. Когда дело доходит до обработки поверхности, обычно используются два варианта: механическая обработка и пескоструйная обработка. Вот краткое введение в них;
После обработки
Обработка на станке с ЧПУ часто оставляет неровную поверхность или текстуру на поверхности ацеталевой части. Когда для улучшения фрикционных свойств необходимы шероховатые или текстурированные детали, предпочтительна поверхностная обработка. Типичный диапазон шероховатости, которого можно достичь при механической обработке, составляет от 32 до 250 микродюймов (от 0,8 до 6,3 микрона).
Жемчужный взрыв
В большинстве случаев обрабатывающие инструменты оставляют следы на ацетальных деталях. Пескоструйная очистка часто используется для предотвращения следов от инструментов и улучшения визуального эффекта деталей, обработанных Delrin. Он работает путем высвобождения стеклянных шариков или мелких частиц на поверхность обрабатываемых деталей под высоким давлением. Кроме того, он повышает долговечность и придает деталям машин из полиформальдегидной смолы ценный, гладкий, матовый, эстетически приятный и сатинированный вид.
Есть и другие методы; Например; Анодирование, полировка, покраска и штамповка. Однако большинство инженеров-конструкторов отдают предпочтение двум вышеуказанным вариантам из-за экономической целесообразности.
Однако использование Delrin для обработки на станках с ЧПУ дает огромные преимущества. Кроме того, у него есть и некоторые недостатки. Вот ограничения Делрина;
Адгезия : Хотя ацеталь обладает превосходной химической стойкостью, при его склеивании с сильными клеями часто возникают проблемы. Чтобы решить эту проблему, дизайнерам, возможно, придется использовать варианты поверхности с последующей обработкой для достижения наилучших результатов.
Термическая чувствительность : Термическая чувствительность является важной проблемой для производителей дизайна. Способность ацетоновых спиртов выдерживать высокие температурные условия весьма значительна. Однако он хорошо подходит для применений, где механическая стабильность имеет решающее значение. Но в некоторых случаях, когда он подвергается воздействию высоких температур, возникают проблемы с деформацией или искажением. По сравнению с нейлоном нейлон демонстрирует более высокую прочность и структурную прочность даже в суровых условиях.
Высокая воспламеняемость : При переработке полиформальдегидной смолы возникает проблема воспламеняемости. Он чувствителен к температуре выше 121 градуса Цельсия. Рекомендуется всегда использовать охлаждающую жидкость, например, воздушную охлаждающую жидкость, для поддержания температуры во время операции обработки. Чтобы преодолеть или контролировать проблемы с воспламеняемостью, при обработке ПОМ также необходимо использовать огнетушитель класса А.
От автомобильных салонов до компонентов аэрокосмической промышленности, Дрин используется в широком спектре применений. Давайте посмотрим на некоторые из его ключевых применений в производстве;
Медицинская промышленность
ПОМ является важным материалом для медицинских компонентов или оборудования. Будучи инженерным термопластом, он соответствует строгим стандартам качества FDA или ISO. Область применения варьируется от корпусов и корпусов до сложных функциональных компонентов; Например; Одноразовые шприцы, хирургические инструменты, клапаны, ингаляторы, протезы и медицинские имплантаты.
Автомобильная индустрия
Derlin поставляет широкий спектр автомобильных компонентов для автомобильной промышленности. Его высокая механическая прочность, низкое трение и износостойкость позволяют инженерам использовать его для изготовления важных деталей автомобилей, мотоциклов и электромобилей. Некоторые распространенные примеры включают: шарнирные корпуса, системы блокировки и блоки датчиков топлива.
Бытовая техника
Когда дело доходит до удобного применения, обработка полиформальдегидом имеет несколько существенных преимуществ. Эксперты-производители используют его для изготовления застежек-молний, кухонных принадлежностей, стиральных машин и зажимов.
Детали промышленного оборудования
Большая прочность Дерлина позволяет использовать его в производстве промышленных деталей. Его способность противостоять износу и характеристики низкого трения делают его идеальным для таких компонентов, как пружины, крыльчатки вентиляторов, шестерни, корпуса, скребки и ролики.
Будучи пионером отрасли, Honscn всегда находится в авангарде развития рынка. Мы знаем, что в условиях жесткой рыночной конкуренции только постоянно совершенствуя себя, мы можем создать несокрушимую конкурентоспособность. Поэтому мы придерживаемся технологических инноваций и интегрируем научный менеджмент в каждое производственное звено, чтобы гарантировать точность каждого шага. Мы не только ориентируемся на пульс внутреннего рынка, но и в соответствии с международными стандартами, с глобальной точки зрения, чтобы изучить тенденции отрасли, уловить пульс The Times. Непредвзято, охватите мир, с отличным качеством, выиграйте будущее!
Пожалуйста, не стесняйтесь обращаться к нам, чтобы обсудить потребности вашего проекта!
Бурение с числовым программным управлением — это метод бурения с использованием технологии цифрового управления. Он обладает характеристиками высокой точности, высокой эффективности и высокой повторяемости. Благодаря предварительному программированию положения сверления, глубины, скорости и других параметров станки с ЧПУ могут автоматически выполнять сложные операции сверления.
Сверлильный станок с ЧПУ обычно состоит из системы управления, системы привода, корпуса машины и вспомогательного устройства. Система управления — это ядро, отвечающее за обработку и отправку инструкций; Система привода реализует движение каждой оси станка; Корпус машины обеспечивает буровую платформу и структурную поддержку; Вспомогательные устройства включают систему охлаждения, систему удаления стружки и т. д. для обеспечения бесперебойного процесса. В обрабатывающей промышленности сверление с ЧПУ широко используется в аэрокосмической, автомобильной, производстве пресс-форм и других областях, что может удовлетворить спрос на высокоточное сверление деталей и повысить эффективность производства и качество продукции.
Принцип обработки технологии сверления с ЧПУ в основном включает в себя следующие шаги.:
1. Программирование: Спроектированная схема сверления и параметры преобразуются в программу обработки, идентифицируемую станком с ЧПУ, с помощью клавиатуры на панели управления или устройства ввода для отправки цифровой информации на устройство с ЧПУ.
2. Обработка сигнала: Устройство ЧПУ выполняет серию обработки входного сигнала, отправляет сервосистему подачи и другие команды выполнения, а также отправляет S, M, T и другие командные сигналы на программируемый контроллер.
3. Станочное исполнение: После того, как программируемый контроллер получает сигналы S, M, T и другие командные сигналы, он управляет корпусом станка для немедленного выполнения этих команд и передает информацию о выполнении корпуса станка устройству ЧПУ в режиме реального времени.
4. Контроль смещения: После получения сервосистемой команды на выполнение подачи координатные оси основного корпуса приводного станка (механизма подачи) точно смещаются в строгом соответствии с требованиями инструкции, и обработка заготовки автоматически завершается.
5. Обратная связь в режиме реального времени: В процессе смещения каждой оси устройство обратной связи по обнаружению быстро передает измеренное значение смещения на устройство числового управления, чтобы сравнить его с заданным значением, а затем очень быстро выдает инструкции по компенсации сервосистеме. скорости до тех пор, пока измеренное значение не будет соответствовать заданному значению.
6. Защита от превышения диапазона: в процессе перемещения каждой оси, если возникает явление «превышения диапазона», ограничительное устройство может послать некоторые сигналы на программируемый контроллер или непосредственно на устройство числового управления, система числового управления с одной стороны подает сигнал тревоги. сигнал через дисплей, с другой стороны, он отправляет команду остановки сервосистеме подачи для реализации защиты от превышения диапазона.
Технология сверления с ЧПУ имеет следующие характеристики обработки.:
1. Высокая степень автоматизации: весь процесс обработки контролируется заранее подготовленной программой, что сокращает ручное вмешательство и повышает эффективность производства.
2. Высокая точность: Он может осуществлять высокоточное сверление, точное позиционирование, а точность размера и формы отверстия гарантирована.
3. Хорошая последовательность обработки: пока процедура остается неизменной, качество продукции стабильно и повторяемость высокая.
4, возможность обработки сложной формы: может обрабатывать различные сложные формы и структуры заготовок для удовлетворения разнообразных потребностей.
5. Широкий диапазон адаптации: подходит для сверления различных материалов, включая металл, пластик, композитные материалы и т. д.
6. Высокая эффективность производства: быстрая автоматическая система смены инструмента и возможность непрерывной обработки, что значительно сокращает время обработки.
7. Легко настраивать и модифицировать: параметры и процесс бурения можно регулировать путем изменения программы, при этом обеспечивается высокая гибкость.
8. Может быть реализована многоосная связь: сверление может осуществляться в нескольких направлениях одновременно, что повышает сложность и точность обработки.
9. Интеллектуальный мониторинг: Он может отслеживать различные параметры процесса обработки в режиме реального времени, такие как сила резания, температура и т. д., вовремя находить проблемы и корректировать их.
10. Хорошее взаимодействие человека и компьютера: оператор может легко управлять и контролировать через рабочий интерфейс.
Точность обработки в технологии сверления с ЧПУ в основном обеспечивается за счет следующих аспектов::
1. Точность станка: выбор высокоточных сверлильных станков с ЧПУ, включая конструктивное исполнение станка, процесс изготовления и точность сборки. Высококачественные направляющие, ходовые винты и другие компоненты трансмиссии могут уменьшить ошибки движения.
2. Система управления: Усовершенствованная система ЧПУ может точно контролировать траекторию движения и скорость станка для достижения высокоточного позиционирования и операций интерполяции, чтобы обеспечить точность положения и глубины сверления.
3. Выбор и установка инструмента.: Выберите подходящее сверло и убедитесь в точности его установки. Качество, геометрия и износ инструмента влияют на точность обработки.
4. Охлаждение и смазка: Хорошая система охлаждения и смазки может снизить выделение тепла при резке, уменьшить износ инструмента, сохранить стабильность процесса обработки и помочь повысить точность.
5. Точность программирования: Точное программирование является основой обеспечения точности обработки. Разумная настройка координат сверления, скорости подачи, глубины резания и других параметров во избежание ошибок программирования.
6. Измерение и компенсация: Через измерительное оборудование для обнаружения заготовки после обработки результаты измерений передаются обратно в систему числового управления для компенсации ошибок, чтобы еще больше повысить точность обработки.
7. Расположение светильника: обеспечить точное и надежное позиционирование заготовки на станке, снизить влияние погрешности зажима на точность обработки.
8. Среда обработки: стабильная температура, влажность и чистая рабочая среда помогают поддерживать точность и стабильность станка, обеспечивая точность обработки.
9. Регулярное техническое обслуживание: Регулярное техническое обслуживание станка, включая проверку и регулировку точности станка, замену изношенных деталей и т. д., чтобы гарантировать, что станок всегда находится в хорошем рабочем состоянии.
В технологии сверления с ЧПУ качество поверхности сверления можно улучшить следующими методами.:
1. Выберите правильный инструмент: В зависимости от обрабатываемого материала и требований к сверлению выбирайте высококачественные, острые и геометрически оптимизированные сверла. Например, использование сверл с покрытием может снизить трение и износ, а также улучшить качество поверхности.
2. Оптимизация параметров резки: разумно устанавливайте скорость резания, скорость подачи и глубину резания. Более высокая скорость резания и правильная подача обычно помогают получить лучшее качество поверхности, но следует проявлять осторожность, чтобы избежать чрезмерного износа инструмента или нестабильности обработки из-за неправильных параметров.
3. Полное охлаждение и смазка: Использование эффективной смазочно-охлаждающей жидкости позволяет своевременно отводить тепло резки, снижать температуру резки, уменьшать износ инструмента и образование опухолей стружки, тем самым улучшая качество поверхности.
4. Контролируйте допуск на обработку: Перед сверлением разумно организуйте процесс предварительной обработки, контролируйте припуск сверлящей части и избегайте чрезмерного или неравномерного воздействия на качество поверхности.
5. Повышение точности и стабильности станка.: Регулярно обслуживайте и калибруйте станок, чтобы обеспечить точность движения и жесткость станка, а также уменьшить влияние вибрации и ошибок на качество поверхности.
6. Оптимизируйте траекторию бурения: применяйте разумные методы подачи и втягивания, чтобы избежать заусенцев и царапин в отверстии отверстия.
7. Контролируйте среду обработки: поддерживайте чистоту среды обработки, постоянную температуру и влажность, уменьшайте влияние внешних факторов на точность обработки и качество поверхности.
8. Использование пошагового сверления: для отверстий большего диаметра или высоких требований к точности можно использовать метод поэтапного сверления, позволяющий постепенно уменьшать отверстие и улучшать качество поверхности.
9. Обработка стенок отверстий: После сверления при необходимости можно применять полировку, шлифовку и другие методы последующей обработки для дальнейшего улучшения качества поверхности отверстия.
Технология сверления с ЧПУ широко используется в следующих областях::
1. Аэрокосмическая область: К компонентам, используемым при производстве самолетов и космических аппаратов, таким как конструкции крыльев, детали двигателей и т. д., предъявляются высокие требования к точности и качеству.
2. Автомобильная промышленность: сверление и обработка блока цилиндров автомобильного двигателя, корпуса трансмиссии, деталей шасси и т. д. для обеспечения точной координации деталей.
3. Производство электронного оборудования: Он играет важную роль при сверлении печатных плат (PCB) для обеспечения точности соединений.
4. Производство пресс-форм: высокоточное сверление для всех видов форм, таких как литьевые формы, штамповки и т. д., для удовлетворения сложной структуры и требований высокой точности формы.
5. Область медицинского оборудования: прецизионные детали для производства медицинских изделий, таких как хирургические инструменты, детали протезов и т. д.
6. Энергетика: включая ветроэнергетическое оборудование, нефтехимическое оборудование и другие детали для бурения.
7. Морское производство: сверление и обработка деталей судовых двигателей, корпусных конструкций и т.д.
8. Военная промышленность: изготовление деталей вооружения и техники для обеспечения их работоспособности и надежности.
Короче говоря, технология сверления с ЧПУ занимает незаменимое место во всех областях современной промышленности благодаря своей высокой точности, высокой эффективности и гибкости.
Тенденция развития технологии сверления с ЧПУ в основном отражается в следующих аспектах::
1. Более высокая точность и скорость: Благодаря постоянному улучшению качества продукции и требований обрабатывающей промышленности к эффективности производства технология сверления с ЧПУ будет развиваться в направлении более высокой точности позиционирования, повторяемости и более высокой скорости сверления.
2. Интеллект и автоматизация: интеграция искусственного интеллекта, машинного обучения и других технологий для достижения автоматического программирования, автоматической оптимизации параметров обработки, автоматической диагностики неисправностей и функций автоматической компенсации ошибок, дальнейшего сокращения ручного вмешательства, повышения эффективности обработки и стабильности качества.
3. Многоосевая связь и обработка композитов: Разработка технологии многоосного сверления позволяет выполнять сверление изделий сложной формы и под разными углами за один зажим. В то же время, с другими процессами обработки, такими как фрезерование, шлифование и т. д., для достижения многомашинной энергии, повышения эффективности и точности обработки.
4. Зеленая защита окружающей среды: Сосредоточьтесь на энергосбережении и сокращении потребления, используя более эффективные системы привода и энергосберегающие технологии для снижения энергопотребления. В то же время использование и обработка смазочно-охлаждающей жидкости оптимизированы для снижения воздействия на окружающую среду.
5. Миниатюризация и масштабность: с одной стороны, он отвечает требованиям высокой точности и стабильности при сверлении микродеталей; С другой стороны, он может заниматься крупномасштабным бурением крупных структурных частей, таких как корабли и мосты.
6. Сеть и удаленное управление: Через сеть можно обеспечить взаимосвязь между оборудованием, удаленный мониторинг, диагностику и техническое обслуживание, повысить эффективность и удобство управления производством.
7. Новая адаптируемость материала: может адаптироваться к новым материалам, таким как суперсплавы, композитные материалы и другие обработки сверления, разработать соответствующие инструменты и процессы.
8. Оптимизация взаимодействия человека и компьютера: Более дружественный и удобный интерфейс взаимодействия человека с компьютером облегчает операторам программирование, эксплуатацию и мониторинг.
Являясь важным методом обработки в современной обрабатывающей промышленности, технология сверления с ЧПУ имеет множество преимуществ и широкие области применения. Принцип обработки обеспечивает высокоточное сверление посредством программирования, обработки сигналов, обработки станка и других этапов. С точки зрения характеристик, он обладает такими преимуществами, как высокая степень автоматизации, высокая точность, хорошая согласованность и широкий диапазон адаптации. Обеспечение точности обработки зависит от многих факторов, таких как точность станка, система управления и выбор инструмента. Качество поверхности сверления можно улучшить за счет подбора режущего инструмента и оптимизации параметров резания. В будущем тенденция развития технологии сверления с ЧПУ будет двигаться в сторону более высокой точности и скорости, интеллекта и автоматизации, многоосной связи и обработки композитов, экологически чистой защиты окружающей среды, миниатюризации и крупномасштабного, сетевого и дистанционного управления, адаптируемости новых материалов и оптимизация взаимодействия человека и компьютера. Ожидается, что технология сверления с ЧПУ будет продолжать внедряться и развиваться, обеспечивая более мощную поддержку прогрессу обрабатывающей промышленности.
Contact: Ada Li
Tel: +86 17722440307
WhatsApp: +86 17722440307
E-mail: Ada@honscn.com
Add: 4F, No. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China