Honscn มุ่งเน้นไปที่บริการเครื่องจักรกลซีเอ็นซีระดับมืออาชีพ
ตั้งแต่ปี 2546
นวัตกรรม งานฝีมือ และสุนทรียศาสตร์มารวมกันในชิ้นส่วนเครื่องจักร CNC แบบกำหนดเองที่น่าทึ่งนี้ ที่ Honscn Co.,Ltd เรามีทีมงานออกแบบที่ทุ่มเทในการปรับปรุงการออกแบบผลิตภัณฑ์อย่างต่อเนื่อง ทำให้ผลิตภัณฑ์สามารถตอบสนองความต้องการของตลาดล่าสุดอยู่เสมอ เฉพาะวัสดุที่มีคุณภาพสูงสุดจะถูกนำมาใช้ในการผลิตและการทดสอบจำนวนมากเกี่ยวกับประสิทธิภาพของผลิตภัณฑ์จะดำเนินการหลังจากการผลิต ทั้งหมดนี้มีส่วนอย่างมากต่อความนิยมที่เพิ่มขึ้นของผลิตภัณฑ์นี้
HONSCN ผลิตภัณฑ์ได้รับเสียงตอบรับที่ดีมากมายนับตั้งแต่เปิดตัว ขอบคุณที่มีประสิทธิภาพสูงและราคาที่แข่งขันได้พวกเขาขายดีในตลาดและดึงดูดฐานลูกค้าขนาดใหญ่ทั่วโลก และลูกค้าเป้าหมายส่วนใหญ่ของเราซื้อคืนจากเราเพราะพวกเขาประสบความสำเร็จในการเติบโตของยอดขายและผลประโยชน์ที่มากขึ้น และอิทธิพลของตลาดที่ใหญ่ขึ้นเช่นกัน
ที่ Honscn ลูกค้าไม่จำเป็นต้องกังวลเกี่ยวกับการขนส่งสินค้า เช่น ชิ้นส่วนเครื่องจักร CNC แบบกำหนดเอง โดยการร่วมมือกับบริษัทโลจิสติกส์ที่เชื่อถือได้ เรารับประกันว่าสินค้าจะมาถึงอย่างปลอดภัยและมีประสิทธิภาพ
ไม่มีเครื่องจักรใดสามารถทำได้โดยไม่มีรู ในการเชื่อมต่อชิ้นส่วนต่างๆ เข้าด้วยกัน จำเป็นต้องมีรูสกรู รูเข็ม หรือรูหมุดย้ำขนาดต่างๆ กัน ในการซ่อมชิ้นส่วนเกียร์ จำเป็นต้องมีรูยึดต่างๆ ชิ้นส่วนเครื่องจักรเองก็มีรูหลายชนิดเช่นกัน (เช่น รูน้ำมัน รูกระบวนการ รูลดน้ำหนัก เป็นต้น) การทำงานของการเจาะรูเพื่อให้รูตรงตามข้อกำหนดเรียกว่าการเจาะรู
พื้นผิวของรูด้านในถือเป็นพื้นผิวที่สำคัญอย่างหนึ่งของชิ้นส่วนเครื่องจักรกล ในชิ้นส่วนเครื่องจักรกล ชิ้นส่วนที่มีรูโดยทั่วไปจะคิดเป็น 50% ถึง 80% ของจำนวนชิ้นส่วนทั้งหมด ประเภทของรูก็หลากหลายเช่นกัน ได้แก่ รูทรงกระบอก รูทรงกรวย รูเกลียว และรูรูปทรง รูทรงกระบอกทั่วไปแบ่งออกเป็นรูทั่วไปและรูลึก และรูลึกนั้นยากต่อการประมวลผล
1. ก่อนอื่น ความแตกต่างระหว่างสว่าน U และสว่านธรรมดาคือสว่าน U ใช้ใบมีดต่อพ่วงและใบมีดตรงกลาง ที่มุมนี้ ความสัมพันธ์ระหว่างสว่าน U และสว่านแข็งธรรมดานั้นจริง ๆ แล้วคล้ายกับความสัมพันธ์ระหว่างเครื่องมือกลึงจับยึดของเครื่องจักร และเครื่องมือกลึงเชื่อมและใบมีดสามารถเปลี่ยนได้โดยตรงหลังจากเครื่องมือสึกหรอโดยไม่ต้องลับคม อย่างไรก็ตาม การใช้ใบมีดแบบถอดเปลี่ยนได้ยังคงประหยัดวัสดุมากกว่าการเจาะหนักทั้งหมด และความสม่ำเสมอของใบมีดทำให้ควบคุมขนาดของชิ้นส่วนได้ง่ายขึ้น
2. ความแข็งแกร่งของดอกสว่าน U นั้นดีกว่า คุณสามารถใช้อัตราการป้อนที่สูงได้ และเส้นผ่านศูนย์กลางการประมวลผลของดอกสว่าน U นั้นใหญ่กว่าดอกสว่านธรรมดามาก โดยสูงสุดสามารถเข้าถึง D50~60 มม. แน่นอน ดอกสว่าน U ต้องไม่เล็กเกินไป เนื่องจากลักษณะของใบมีด
3.เจาะ U พบวัสดุหลากหลายเพียงต้องเปลี่ยนใบมีดเกรดต่าง ๆ ชนิดเดียวกัน เจาะยากไม่สะดวก
4. เมื่อเทียบกับการเจาะหนัก ความแม่นยำของรูที่เจาะด้วยการเจาะ U ยังคงสูงกว่า และผิวสำเร็จจะดีกว่า โดยเฉพาะอย่างยิ่งเมื่อการระบายความร้อนและการหล่อลื่นไม่ราบรื่น จะเห็นได้ชัดเจนกว่า และการเจาะ U สามารถแก้ไขความแม่นยำของตำแหน่งของรูได้ และการเจาะอย่างหนักไม่สามารถทำได้และการเจาะ U สามารถใช้เป็นมีดเจาะได้
1. ดอกสว่าน U สามารถเจาะรูบนพื้นผิวที่มีมุมเอียงน้อยกว่า 30~ โดยไม่ลดพารามิเตอร์การตัด
2. หลังจากที่พารามิเตอร์การตัดของการเจาะ U ลดลง 30% ก็สามารถบรรลุการตัดแบบไม่ต่อเนื่องได้ เช่น การประมวลผลรูที่ตัดกัน รูที่ตัดกัน และการเจาะเฟส
3. การเจาะ U สามารถรับรู้ถึงการเจาะรูแบบหลายขั้นตอนและสามารถเจาะ ลบมุม เจาะนอกรีตได้
4. เมื่อเจาะ เศษเจาะส่วนใหญ่เป็นเศษสั้น และระบบระบายความร้อนภายในสามารถใช้เพื่อกำจัดเศษได้อย่างปลอดภัย โดยไม่ต้องทำความสะอาดเศษบนเครื่องมือ ซึ่งเอื้อต่อการประมวลผลผลิตภัณฑ์อย่างต่อเนื่อง ลดระยะเวลาการประมวลผลและ ปรับปรุงประสิทธิภาพ
5. ภายใต้เงื่อนไขของอัตราส่วนความยาว-เส้นผ่านศูนย์กลางมาตรฐาน ไม่จำเป็นต้องถอดเศษออกเมื่อเจาะด้วยดอกสว่าน U
6. ดอกสว่าน U สำหรับเครื่องมือแบบถอดเปลี่ยนได้ ใบมีดสึกหรอโดยไม่ต้องลับคม เปลี่ยนได้สะดวกกว่า และต้นทุนต่ำ
7. ค่าความหยาบผิวของรูที่ประมวลผลโดยการเจาะ U มีค่าน้อย และช่วงพิกัดความเผื่อมีน้อย ซึ่งสามารถทดแทนการทำงานของเครื่องมือคว้านบางชนิดได้
8. การใช้การเจาะ U ไม่จำเป็นต้องเจาะรูตรงกลางล่วงหน้า และพื้นผิวด้านล่างของรูตาบอดที่ประมวลผลนั้นค่อนข้างตรง ทำให้ไม่ต้องเจาะก้นแบน
9. การใช้เทคโนโลยีการเจาะ U ไม่เพียงแต่สามารถลดเครื่องมือขุดเจาะได้เท่านั้น และเนื่องจากการเจาะ U เป็นหัวของใบมีดคาร์ไบด์ซีเมนต์ อายุการตัดจึงมากกว่าสว่านธรรมดาถึงสิบเท่า ในเวลาเดียวกัน มีคมตัดสี่คมบน ใบมีด สามารถเปลี่ยนการสึกหรอของใบมีดได้ตลอดเวลาในการตัด การตัดใหม่ช่วยประหยัดเวลาในการเจียรได้มากและเปลี่ยนเวลาเครื่องมือ สามารถปรับปรุงประสิทธิภาพโดยเฉลี่ย 6-7 เท่า
1. เมื่อใช้ดอกสว่าน U ความแข็งแกร่งของเครื่องมือกลและความเป็นกลางของเครื่องมือและชิ้นงานจะสูง ดังนั้นดอกสว่าน U จึงเหมาะสำหรับการใช้กับเครื่องมือกล CNC กำลังสูง ความแข็งแกร่งสูง และความเร็วสูง
2. เมื่อใช้การเจาะ U ควรใช้ใบมีดตรงกลางที่มีความเหนียวดี และควรใช้ใบมีดต่อพ่วงกับใบมีดที่ค่อนข้างคม
3. เมื่อแปรรูปวัสดุที่แตกต่างกัน ควรเลือกใบมีดร่องที่แตกต่างกัน ภายใต้สถานการณ์ปกติ อาหารขนาดเล็ก ความอดทนต่ำ อัตราส่วนความยาวการเจาะต่อเส้นผ่านศูนย์กลาง U เลือกใบมีดร่องที่มีแรงตัดน้อยกว่า ในทางตรงกันข้าม การกลึงหยาบ ความคลาดเคลื่อนสูง ความยาวการเจาะ U อัตราส่วนเส้นผ่านศูนย์กลางมีขนาดเล็ก จากนั้นเลือกใบมีดร่องที่มีแรงตัดมากขึ้น
4. เมื่อใช้การเจาะ U เราต้องพิจารณาถึงพลังของแกนหมุนของเครื่องมือกล ความเสถียรของการหนีบเจาะ U ความดันและการไหลของของเหลวตัด และควบคุมผลการกำจัดเศษของการเจาะ U มิฉะนั้นจะส่งผลอย่างมากต่อความหยาบของพื้นผิวและ ความแม่นยำของมิติของรู
5. ในการติดตั้งดอกสว่าน U จำเป็นต้องทำให้ศูนย์กลางของดอกสว่าน U ตรงกับจุดศูนย์กลางของชิ้นงานและตั้งฉากกับพื้นผิวของชิ้นงาน
6. เมื่อใช้การเจาะ U ควรเลือกพารามิเตอร์การตัดที่เหมาะสมตามวัสดุชิ้นส่วนต่างๆ
7. เมื่อทดสอบการตัดเจาะ ต้องแน่ใจว่าไม่ลดอัตราป้อนหรือความเร็วตามต้องการเนื่องจากความระมัดระวังและความกลัว เพื่อให้ใบสว่าน U เสียหายหรือดอกสว่าน U เสียหาย
8. เมื่อใช้การประมวลผล U-drill เมื่อใบมีดชำรุดหรือชำรุด จำเป็นต้องวิเคราะห์เหตุผลอย่างรอบคอบ และเปลี่ยนใบมีดด้วยความเหนียวที่ดีขึ้นหรือทนต่อการสึกหรอมากขึ้น
9. เมื่อใช้ดอกสว่าน U เพื่อเจาะรูขั้นบันได จำเป็นต้องเริ่มการประมวลผลจากรูขนาดใหญ่แล้วจึงเจาะรูขนาดเล็ก
10. เมื่อเจาะ ควรระวังน้ำมันตัดเพื่อให้มีแรงดันเพียงพอเพื่อชะล้างเศษออก
11. ใบมีดที่ใช้ตรงกลางและขอบของดอกสว่าน U นั้นแตกต่างกัน จะต้องไม่ใช้ในทางที่ผิด ไม่เช่นนั้นจะทำให้แกนสว่าน U เสียหายได้
12. เมื่อเจาะด้วยดอกสว่าน U สามารถใช้การหมุนชิ้นงาน การหมุนเครื่องมือ และการหมุนเครื่องมือและชิ้นงานไปพร้อมๆ กัน แต่เมื่อเครื่องมือถูกย้ายในโหมดป้อนเชิงเส้น วิธีที่พบบ่อยที่สุดคือการใช้โหมดการหมุนชิ้นงาน
13. ควรพิจารณาประสิทธิภาพของเครื่องกลึงเมื่อตัดเฉือนรถยนต์ CNC และควรปรับพารามิเตอร์การตัดอย่างเหมาะสม โดยทั่วไปจะลดความเร็วและอัตราป้อนต่ำ
1. ใบมีดเสียหายเร็วเกินไป แตกหักง่าย และต้นทุนการประมวลผลเพิ่มขึ้น
2. ระหว่างการประมวลผลจะมีเสียงนกหวีดรุนแรง และสถานะการตัดผิดปกติ
3. ความกระวนกระวายใจของเครื่องจักร ส่งผลต่อความแม่นยำในการตัดเฉือนของเครื่องมือกล
1. การติดตั้งสว่าน U ควรคำนึงถึงทิศทางบวกและลบ ซึ่งใบมีดอยู่ด้านบน ใบมีดใดอยู่ด้านล่าง ซึ่งหันด้านในและหันด้านนอก
2. ต้องแก้ไขความสูงตรงกลางของการเจาะ U ตามขนาดเส้นผ่านศูนย์กลางที่ต้องการช่วงการควบคุม โดยทั่วไปควบคุมภายใน 0.1 มม. ยิ่งเส้นผ่านศูนย์กลางของการเจาะ U เล็กลง ยิ่งความต้องการความสูงตรงกลางสูง ความสูงตรงกลางไม่ดีในการเจาะ U ทั้งสองด้านจะสึกหรอ รูรับแสงจะใหญ่ขึ้น อายุการใช้งานของใบมีดจะสั้นลง การเจาะ U ขนาดเล็กจะแตกหักง่าย
3. สว่าน U มีความต้องการน้ำหล่อเย็นที่สูงมาก ต้องแน่ใจว่าน้ำหล่อเย็นถูกปล่อยออกมาจากศูนย์กลางของสว่าน U ยิ่งแรงดันของน้ำหล่อเย็นยิ่งมากเท่าไรก็ยิ่งดีเท่านั้นที่สามารถปิดกั้นทางออกน้ำส่วนเกินของหอคอยได้เพื่อให้แน่ใจว่า ความดัน.
4, U เจาะพารามิเตอร์การตัดอย่างเคร่งครัดตามคำแนะนำของผู้ผลิต แต่ยังต้องพิจารณาใบมีดยี่ห้อต่างๆ กำลังเครื่องจักร การประมวลผลสามารถอ้างอิงถึงค่าโหลดของขนาดเครื่องมือเครื่อง ทำการปรับเปลี่ยนที่เหมาะสม โดยทั่วไปจะใช้ความเร็วสูง อาหารต่ำ .
5.U เจาะใบมีดเพื่อตรวจสอบบ่อยครั้ง เปลี่ยนทันเวลา ใบมีดที่แตกต่างกันไม่สามารถติดตั้งย้อนกลับได้
6. ตามความแข็งของชิ้นงานและความยาวของระบบกันสะเทือนของเครื่องมือในการปรับปริมาณการป้อน ยิ่งชิ้นงานมีความแข็งมากขึ้น ระบบกันสะเทือนของเครื่องมือก็จะยิ่งมากขึ้น ปริมาณการตัดก็จะยิ่งน้อยลงเท่านั้น
7. อย่าใช้การสึกหรอของใบมีดมากเกินไป ควรบันทึกในการผลิตการสึกหรอของใบมีดและความสัมพันธ์ระหว่างจำนวนชิ้นงานที่สามารถกลึงได้ และการเปลี่ยนใบมีดใหม่ทันเวลา
8. ใช้น้ำหล่อเย็นภายในที่เพียงพอและมีแรงดันที่ถูกต้อง หน้าที่หลักของน้ำหล่อเย็นคือการขจัดเศษและระบายความร้อน
9.สว่าน U ไม่สามารถใช้สำหรับการประมวลผลวัสดุที่อ่อนนุ่ม เช่นทองแดง อลูมิเนียมอ่อน ฯลฯ
Honscn มีประสบการณ์ด้านเครื่องจักรซีเอ็นซีมากกว่าสิบปี โดยเชี่ยวชาญด้านเครื่องจักรซีเอ็นซี การประมวลผลชิ้นส่วนเครื่องจักรกลฮาร์ดแวร์ การประมวลผลชิ้นส่วนอุปกรณ์อัตโนมัติ การประมวลผลชิ้นส่วนหุ่นยนต์, การประมวลผลชิ้นส่วน UAV, การประมวลผลชิ้นส่วนจักรยาน, การประมวลผลชิ้นส่วนทางการแพทย์ ฯลฯ เป็นหนึ่งในซัพพลายเออร์คุณภาพสูงของเครื่องจักรกลซีเอ็นซี ปัจจุบัน บริษัทมีศูนย์เครื่องจักรกลซีเอ็นซี เครื่องบด เครื่องกัด อุปกรณ์ทดสอบความแม่นยำสูงคุณภาพสูงมากกว่า 50 ชุด เพื่อให้ลูกค้าได้รับบริการการประมวลผลชิ้นส่วนอะไหล่ซีเอ็นซีที่มีความแม่นยำและมีคุณภาพสูง
1 การเปลี่ยนเครื่องมือของนิตยสารประเภทหมวก ส่วนใหญ่จะใช้โหมดการเปลี่ยนเครื่องมือที่อยู่คงที่ และหมายเลขเครื่องมือได้รับการแก้ไขตามหมายเลขที่นั่งเครื่องมือ การดำเนินการเปลี่ยนเครื่องมือเกิดขึ้นได้จากการเคลื่อนที่ด้านข้างของแม็กกาซีนเครื่องมือและการเคลื่อนที่ขึ้นและลงของสปินเดิล ซึ่งเรียกโดยย่อว่าโหมดการเปลี่ยนเครื่องมือสปินเดิล เนื่องจากไม่มีตัวจัดการการเปลี่ยนแปลงเครื่องมือ การดำเนินการเลือกเครื่องมือจึงไม่สามารถเลือกล่วงหน้าก่อนการดำเนินการเปลี่ยนเครื่องมือได้ คำแนะนำในการเปลี่ยนเครื่องมือและคำแนะนำในการเลือกเครื่องมือโดยทั่วไปจะเขียนอยู่ในส่วนของโปรแกรมเดียวกัน และรูปแบบคำสั่งจะเป็นดังนี้:M06 T
เมื่อดำเนินการคำสั่ง แม็กกาซีนเครื่องมือจะเปลี่ยนที่จับเครื่องมือตามหมายเลขเครื่องมือบนสปินเดิลเป็นตำแหน่งการเปลี่ยนเครื่องมือก่อน จากนั้นสลับเครื่องมือบนสปินเดิลกลับไปที่ที่จับเครื่องมือ จากนั้นแม็กกาซีนเครื่องมือจะเปลี่ยนเครื่องมือที่ระบุ ในคำสั่งให้เปลี่ยนตำแหน่งเครื่องมือและเปลี่ยนสปินเดิล สำหรับนิตยสารเครื่องมือนี้ แม้ว่าจะดำเนินการ TX x ก่อน M06 ก็ไม่สามารถเลือกเครื่องมือล่วงหน้าได้ * การดำเนินการของการเลือกเครื่องมือขั้นสุดท้ายจะยังคงดำเนินการเมื่อดำเนินการ M06 หากไม่มี TX X ที่ด้านหน้า M06 ระบบจะส่งสัญญาณเตือน2 การเปลี่ยนเครื่องมือของแผ่นดิสก์และแม็กกาซีนโซ่
ส่วนใหญ่ใช้โหมดการเปลี่ยนแปลงเครื่องมือที่อยู่สุ่ม ความสัมพันธ์ที่สอดคล้องกันระหว่างหมายเลขเครื่องมือและหมายเลขที่นั่งเครื่องมือนั้นเป็นแบบสุ่ม แต่ระบบ NC สามารถจดจำความสัมพันธ์ที่สอดคล้องกันได้ การเปลี่ยนเครื่องมือของนิตยสารเครื่องมือนี้ขึ้นอยู่กับผู้ควบคุม การดำเนินการของคำสั่งและการเปลี่ยนแปลงเครื่องมือคือ: คำสั่งเครื่องมือ TX ควบคุมการหมุนของนิตยสารเครื่องมือและเปลี่ยนเครื่องมือที่เลือกไปที่ตำแหน่งการทำงานของการเปลี่ยนเครื่องมือ ในขณะที่คำสั่งเปลี่ยนเครื่องมือ M06 ควบคุมการทำงานของตัวจัดการการเปลี่ยนแปลงเครื่องมือเพื่อให้ทราบถึง การแลกเปลี่ยนเครื่องมือระหว่างเครื่องมือสปินเดิลกับตำแหน่งการเปลี่ยนเครื่องมือของแม็กกาซีนเครื่องมือ คำสั่งการเลือกเครื่องมือและคำสั่งเปลี่ยนเครื่องมือสามารถอยู่ในส่วนของโปรแกรมเดียวกันหรือเขียนแยกกันได้ การดำเนินการที่เกี่ยวข้องกับการเลือกเครื่องมือและคำสั่งการเปลี่ยนเครื่องมือสามารถดำเนินการพร้อมกันหรือแยกกันได้ รูปแบบคำสั่งมีดังนี้:
Tx x M06;เมื่อดำเนินการคำสั่ง นิตยสารเครื่องมือจะเปลี่ยนเครื่องมือ TX ไปที่ตำแหน่งเปลี่ยนเครื่องมือก่อน จากนั้นตัวจัดการจะแลกเปลี่ยนเครื่องมือของนิตยสารเครื่องมือกับเครื่องมือของแกนหมุนเพื่อให้ทราบถึงวัตถุประสงค์ของการเปลี่ยนเครื่องมือ TX ไปที่สปินเดิล หลังจากอ่านสองวิธีข้างต้นแล้ว จะเห็นว่าวิธีที่ 2 ซ้อนทับการเลือกเครื่องมือกับการตัดเฉือน ดังนั้น เมื่อเปลี่ยนเครื่องมือจึงไม่จำเป็นต้องเลือกเครื่องมือและเปลี่ยนเครื่องมือโดยตรง ซึ่ง ดีขึ้น ประสิทธิภาพการทำงาน
ตามที่กล่าวไว้ข้างต้น คำสั่งเปลี่ยนเครื่องมือของนิตยสารเครื่องมือเกี่ยวข้องกับผู้ผลิตเครื่องมือกล ตัวอย่างเช่น นิตยสารเครื่องมือบางฉบับกำหนดให้ไม่เพียงแต่แกน Z จะต้องกลับไปยังจุดเปลี่ยนเครื่องมือ แต่แกน Y จะต้องกลับไปยังจุดเปลี่ยนเครื่องมือด้วย รูปแบบของโปรแกรมมีดังนี้:
เมื่อเขียนคำแนะนำในการเลือกเครื่องมือและการเปลี่ยนเครื่องมือในส่วนโปรแกรมเดียวกัน กฎการทำงานของเครื่องมือจากผู้ผลิตหลายรายอาจแตกต่างกันด้วย หากมี โดยไม่คำนึงถึงคำสั่งการเขียน จะต้องปฏิบัติตามกฎการเลือกเครื่องมือและการเปลี่ยนเครื่องมือ กฎบางข้อกำหนดว่าต้องเขียนคำสั่งการเลือกเครื่องมือก่อนที่จะดำเนินการคำสั่งเปลี่ยนเครื่องมือ มิฉะนั้นการดำเนินการคือเปลี่ยนเครื่องมือก่อนแล้วจึงเลือกเครื่องมือดังที่แสดงในโปรแกรมด้านบน ในกรณีนี้ หากไม่ได้เขียนคำสั่งการเลือกเครื่องมือก่อนที่จะดำเนินการคำสั่ง M06 ระบบจะส่งสัญญาณเตือน
“การตัดเฉือน CNC มักจะมีข้อดีหลายประการ จากมุมมองของการใช้งานด้านยานยนต์ การบินและอวกาศ และผู้บริโภค มีการใช้กันอย่างแพร่หลายในการผลิตส่วนประกอบในสาขาเหล่านี้ และในทางหนึ่ง มันก็มีคุณสมบัติคล้ายคลึงกับโลหะ"
โพลีฟอร์มาลดีไฮด์หรือ POM เป็นเม็ดพลาสติกที่น่าสนใจซึ่งใช้กันอย่างแพร่หลายในอุตสาหกรรมต่างๆ อุตสาหกรรมการบินและอวกาศ ยานยนต์ และอิเล็กทรอนิกส์เป็นผู้บริโภคสำคัญของโพลีเมอร์นี้ การประมวลผลโพลีฟอร์มาลดีไฮด์ โดยเฉพาะอย่างยิ่งเมื่อใช้ในด้านการผลิต สามารถบรรลุการประมวลผลที่รวดเร็วและมีประสิทธิภาพ นอกจากนี้ ยังเป็นประโยชน์ต่อผู้ใช้เนื่องจากมีความแข็งแรงเชิงกล ความแข็ง ความสามารถในการแปรรูปสูง และมีเกรดให้เลือกหลากหลาย
บทความนี้ประกอบด้วยรายละเอียดที่สำคัญของการตัดเฉือน POM CNC ดังต่อไปนี้ รวมถึงคุณลักษณะพื้นฐานในแง่ของฟังก์ชัน การใช้งาน ข้อดี ฯลฯ มาเริ่มกันเลย
POM ซึ่งเป็นโฮโมโพลีเมอร์มีอีกชื่อหนึ่งว่าเดลริน ได้รับการยอมรับอย่างกว้างขวางว่าเป็นเทอร์โมพลาสติกเกรดวิศวกรรมสำหรับการผลิตต้นแบบสำหรับใช้ในอุตสาหกรรม โดยปกติจะมีสองรูปแบบ: โคโพลีเมอร์หรือโฮโมโพลีเมอร์ ตั้งแต่ต้นแบบที่ซับซ้อนไปจนถึงชิ้นส่วนเครื่องจักรที่ยืดหยุ่น นำมาซึ่งประโยชน์ทางเศรษฐกิจต่อการผลิต
ผู้ออกแบบผลิตภัณฑ์จะได้รับประโยชน์จากความสมบูรณ์ของโครงสร้าง ความหลากหลายของสี และลักษณะความแข็ง นอกจากนี้ ความน่าเชื่อถือและความยืดหยุ่นในสภาพแวดล้อมที่เปียก ทำให้เหมาะสำหรับการใช้งานทางทะเล การแพทย์ และการบินและอวกาศ POM มักจะมีชื่ออื่น เช่น; อะซีตัล (อะซีตัล), โพลีอะซีตัล (โพลีอะซีตัล), โพลีฟอร์มัลดีไฮด์ ฯลฯ
ฟอร์มาลดีไฮด์ POM หรือโพลิอะซีทัลมีข้อได้เปรียบที่สำคัญเมื่อใช้ในการตัดเฉือน ได้รับประโยชน์จากเทคโนโลยีชั้นนำ เช่น POM ของเครื่องจักรที่มีความแม่นยำหรือเครื่องจักร CNC ตัวอย่างเช่น; งานกัด เจาะ เจาะ และเจาะ นอกจากนี้ ความอเนกประสงค์ในเกรดต่างๆ ยังเป็นประโยชน์อย่างมากสำหรับผู้เชี่ยวชาญด้านการตัดเฉือน Delrin ยังเข้ากันได้กับเทคโนโลยีการตัดขั้นสูง ตัวอย่าง ได้แก่ กระบวนการตัดด้วยเลเซอร์และการอัดขึ้นรูป
คุณสมบัติหลักบางประการของเครื่องจักร CNC ได้แก่:
เครื่องจักรกลซีเอ็นซีพลาสติกสามารถใช้งานได้ผ่านเทคโนโลยีต่างๆ ตัวอย่างเช่น; การกัดซีเอ็นซี, การเจาะซีเอ็นซี, เครื่องกลึง, การเจียร, การแบลงก์ และการเจาะ ความง่ายในการประมวลผลส่งผลกระทบอย่างมากต่อการใช้งานในกระบวนการเหล่านี้ นอกจากนี้ยังได้รับความสนใจอย่างมากในเรื่องการยืดตัวที่สูง ตอนนี้ เรามาพูดถึงวิธีการเพื่อให้ได้ผลลัพธ์ที่ดีที่สุดสำหรับการตัดเฉือน POM CNC
กระบวนการเริ่มต้นด้วยการออกแบบและการเขียนโปรแกรมโดยใช้คอมพิวเตอร์ช่วย เพื่อปรับปรุงระดับความแม่นยำ คุณภาพ และการเพิ่มประสิทธิภาพ หลังจากการกำหนดค่าเสมือน คำแนะนำจะถูกส่งต่อไปยังเครื่อง CNC ในรูปแบบต่อไปนี้: รหัส G สำหรับการประมวลผลลูกค้าเป้าหมายเพิ่มเติม
จากนั้นจะมีการดำเนินการตัดกับวัสดุชิ้นงาน (POM) เพื่อให้ได้ขนาดและขนาดที่เหมาะสมที่สุด ขอแนะนำให้ใช้น้ำหล่อเย็นเมื่อตัดเฉือน Delrin ด้วยความเร็วสูง เพื่อป้องกันการดำเนินการที่ไม่มีประสิทธิภาพ เช่น การสะสมของเศษหรือความร้อนสูงเกินไป
ต่อไปนี้เป็นเทคนิคบางส่วนที่ใช้ในการประมวลผลโดยทั่วไป แข็งแกร่ง โพลีฟอร์มาลดีไฮด์หรือ POM
1.POM เครื่องกัดซีเอ็นซี
การกัด CNC มักใช้ในการตัดเฉือนชิ้นส่วน POM เครื่องมือที่มีขอบคมช่วยให้ได้มุมที่ดีที่สุดรวมถึงการตกแต่งพื้นผิวด้วย ดังนั้นจึงสมเหตุสมผลที่จะใช้คัตเตอร์กัดช่องเดียวในการประมวลผล Delrin หัวกัดเหล่านี้ป้องกันการสะสมเศษระหว่างการตัดเฉือน
2.POM CNC เจาะ
ดอกสว่านเกลียวและดอกนำศูนย์มาตรฐานเหมาะที่สุดสำหรับการแปรรูปโพลีฟอร์มาลดีไฮด์เรซิน วัสดุเหล่านี้มีคมตัดที่แข็งแกร่งและคมขึ้น ซึ่งช่วยให้การกัด Delrin เป็นไปอย่างราบรื่นในที่สุด ความเร็วตัดที่เหมาะสมที่สุดของ POM ที่เจาะจะต้องอยู่ที่ประมาณ 1500 รอบต่อนาที และมุมบิดของปาก 118°.
3.POM CNC กลึง
การกลึง CNC POM คล้ายกับการกลึงทองเหลือง ผลลัพธ์ที่ดีที่สุดสามารถทำได้โดยการรักษาการหมุนด้วยความเร็วสูงในอัตราเดียวกับอัตราการป้อนปานกลาง เพื่อป้องกันการรบกวนและปัญหาการสะสมเศษมากเกินไป ต้องใช้ร่องคายเศษเพื่อการกลึงที่แม่นยำ
4. การแบลงก์และการเจาะ
การปิดผิวและการปั๊ม ทั้งสองวิธีเหมาะสำหรับชิ้นส่วนที่ซับซ้อนขนาดเล็กและขนาดกลาง ในระหว่างการดำเนินการ รอยแตกในแผ่นอาจทำให้เกิดปัญหาใหญ่ของการประมวลผลที่ไม่เหมาะสม เพื่อขจัดปัญหานี้ วิธีที่ดีที่สุดคืออุ่นจาน Delrin และใช้หมัดแบบแมนนวลหรือแบบแรงสูง
จุดเด่น: "ในระหว่างการตัดเฉือน POM CNC สิ่งสำคัญคือต้องรักษา POM ให้แน่นหรือจับ POM ไว้และใช้เครื่องมือเหล็กหรือคาร์ไบด์แข็ง
เกรดอะซีตัลสองเกรดที่พบบ่อยที่สุดมีประโยชน์อย่างมากสำหรับการตัดเฉือน CNC; โพลีฟอร์มาลดีไฮด์เรซิน 150, เรซินโพลีฟอร์มาลดีไฮด์; 100 (เอเอฟ) มาประเมินความเข้ากันได้กัน
1. เดลริน 150
Derlin 150 อยู่ในตระกูลอะซีตัลโฮโมโพลีเมอร์ มีความแข็งแรงทางกล ความแข็ง และความทนทานต่อการสึกหรอสูง ด้วยคุณสมบัติพิเศษเหล่านี้ จึงเหมาะอย่างยิ่งสำหรับการตัดเฉือนเกียร์ บุชชิ่ง ปะเก็น และการตกแต่งภายในและภายนอกรถยนต์ด้วย CNC นอกจากนี้ความเสถียรภายใต้สภาวะที่มีอุณหภูมิสูงทำให้เหมาะสำหรับการชลประทานและชิ้นส่วนสายพานลำเลียง
2. เดลริน 100(A)
Delrin 100 A ถูกรวมเข้ากับโพลีเตตราฟลูออโรเอทิลีน (PTFE) เพื่อเพิ่มเสถียรภาพทางกลและความหนืด มีการใช้กันอย่างแพร่หลายในระบบเกียร์หรือส่วนประกอบที่ต้องการลักษณะการเสียดสีต่ำ นอกจากนี้ยังมีความทนทานต่อความชื้นและสารเคมีได้ดี นอกจากนี้ยังขจัดคุณสมบัติการหล่อลื่นในตัวเอง (น้ำมันหรือจาระบี) ทำให้แตกต่างจากเกรด Delrin อื่น ๆ
ผิวสำเร็จที่ต้องการมีบทบาทสำคัญในกระบวนการตัดเฉือน เมื่อพูดถึงการรักษาพื้นผิว โดยปกติแล้วจะมีสองตัวเลือก: การตัดเฉือนและการพ่นทราย ต่อไปนี้เป็นคำแนะนำสั้น ๆ เกี่ยวกับสิ่งเหล่านี้
หลังจากประมวลผลแล้ว
การตัดเฉือน CNC มักจะทิ้งพื้นผิวหรือพื้นผิวที่เป็นหลุมเป็นบ่อไว้บนพื้นผิวของชิ้นส่วนอะซีตัล เมื่อจำเป็นต้องใช้ชิ้นส่วนที่หยาบหรือมีพื้นผิวเพื่อปรับปรุงคุณสมบัติการเสียดสีของชิ้นส่วน แนะนำให้ใช้การรักษาพื้นผิว ช่วงความหยาบโดยทั่วไปที่สามารถทำได้โดยการตัดเฉือนคือประมาณ 32 ถึง 250 ไมโครนิ้ว (0.8 ถึง 6.3 ไมครอน)
ไข่มุกแตก
ในกรณีส่วนใหญ่ เครื่องมือตัดเฉือนจะทิ้งรอยไว้บนชิ้นส่วนอะซีตัล การพ่นทรายมักใช้เพื่อป้องกันเครื่องหมายของเครื่องมือและเพิ่มเอฟเฟกต์การมองเห็นของชิ้นส่วนที่กลึงด้วย Delrin ทำงานโดยการปล่อยเม็ดแก้วหรืออนุภาคละเอียดลงบนพื้นผิวของชิ้นส่วนกลึงภายใต้แรงดันสูง นอกจากนี้ ยังช่วยเพิ่มความทนทานและให้รูปลักษณ์ที่มีคุณค่า เรียบเนียน ผิวด้าน สวยงามน่าพึงพอใจ และขัดเงาแบบซาตินให้กับชิ้นส่วนเครื่องจักรโพลีฟอร์มาลดีไฮด์เรซิน
มีเทคนิคอื่นๆ ตัวอย่างเช่น; อโนไดซ์ ขัดเงา พ่นสี และปั๊ม อย่างไรก็ตาม วิศวกรออกแบบส่วนใหญ่ชอบสองตัวเลือกข้างต้นเนื่องจากความเป็นไปได้ทางเศรษฐกิจ
อย่างไรก็ตาม การใช้ Delrin สำหรับการตัดเฉือน CNC มีประโยชน์อย่างมาก นอกจากนี้ยังมีข้อเสียอยู่บ้าง นี่คือข้อจำกัดของ Delrin
การยึดเกาะ : แม้ว่าอะซีตัลจะมีความทนทานต่อสารเคมีดีเยี่ยม แต่การยึดเกาะด้วยกาวที่มีความแข็งแรงสูงก็มักจะนำมาซึ่งความท้าทาย เพื่อเอาชนะปัญหานี้ นักออกแบบอาจจำเป็นต้องใช้ตัวเลือกพื้นผิวที่ผ่านการบำบัดแล้วเพื่อให้ได้ผลลัพธ์ที่ดีที่สุด
ความไวต่อความร้อน : ความไวต่อความร้อนเป็นปัญหาสำคัญสำหรับผู้ผลิตด้านการออกแบบ ความสามารถของอะซิโตนแอลกอฮอล์ในการทนต่อสภาวะที่มีอุณหภูมิสูงมีความสำคัญมาก อย่างไรก็ตาม มันเหมาะอย่างยิ่งสำหรับการใช้งานที่เสถียรภาพทางกลเป็นสิ่งสำคัญ แต่ในบางกรณีเมื่อสัมผัสกับสภาวะที่มีอุณหภูมิสูงจะเกิดปัญหาการเสียรูปหรือการบิดเบี้ยว เมื่อเปรียบเทียบกับไนลอน ไนลอนมีความแข็งแรงและความแข็งแรงของโครงสร้างสูงกว่าแม้ในสภาพแวดล้อมที่รุนแรง
มีความไวไฟสูง : การประมวลผลโพลีฟอร์มาลดีไฮด์เรซินเผชิญกับความท้าทายจากการติดไฟ มีความไวต่ออุณหภูมิที่สูงกว่า 121 องศาเซลเซียส ขอแนะนำให้ใช้สารหล่อเย็น เช่น น้ำหล่อเย็นด้วยลม เพื่อรักษาอุณหภูมิระหว่างการประมวลผล เพื่อที่จะเอาชนะหรือควบคุมปัญหาการติดไฟ จึงจำเป็นต้องใช้เครื่องดับเพลิงประเภท A เมื่อดำเนินการ POM
ตั้งแต่การตกแต่งภายในรถยนต์ไปจนถึงส่วนประกอบด้านการบินและอวกาศ Drin ถูกนำมาใช้ในการใช้งานที่หลากหลาย มาดูการใช้งานหลักๆ ในการผลิตกัน
อุตสาหกรรมการแพทย์
POM เป็นวัสดุที่สำคัญสำหรับส่วนประกอบหรืออุปกรณ์ทางการแพทย์ เนื่องจากเป็นเทอร์โมพลาสติกเชิงวิศวกรรม จึงเป็นไปตามมาตรฐานคุณภาพที่เข้มงวดของ FDA หรือ ISO การใช้งานมีตั้งแต่เปลือกหุ้มและตัวเรือนไปจนถึงส่วนประกอบการทำงานที่ซับซ้อน ตัวอย่างเช่น; กระบอกฉีดยาแบบใช้แล้วทิ้ง เครื่องมือผ่าตัด วาล์ว เครื่องช่วยหายใจ อุปกรณ์เทียม และการปลูกถ่ายทางการแพทย์
อุตสาหกรรมยานยนต์
Derlin เป็นผู้จัดหาชิ้นส่วนยานยนต์ที่หลากหลายให้กับอุตสาหกรรมยานยนต์ ความแข็งแรงเชิงกลสูง แรงเสียดทานต่ำ และความต้านทานต่อการสึกหรอช่วยให้วิศวกรใช้ในการผลิตชิ้นส่วนรถยนต์ รถจักรยานยนต์ และรถยนต์ไฟฟ้าที่สำคัญได้ ตัวอย่างทั่วไปได้แก่: ตัวเรือนแบบเชื่อมต่อ ระบบล็อค และชุดส่งสัญญาณน้ำมันเชื้อเพลิง
เครื่องอุปโภคบริโภค
เมื่อพูดถึงการใช้งานที่สะดวกสบาย การประมวลผลโพลีฟอร์มาลดีไฮด์อธิบายถึงคุณประโยชน์ที่สำคัญหลายประการ ผู้เชี่ยวชาญด้านการผลิตใช้ทำซิป อุปกรณ์ทำอาหาร เครื่องซักผ้า และคลิปหนีบ
ชิ้นส่วนเครื่องจักรอุตสาหกรรม
จุดแข็งที่ยอดเยี่ยมของ Derlin ทำให้สามารถนำไปใช้ในการผลิตชิ้นส่วนอุตสาหกรรมได้ ความสามารถในการทนต่อการสึกหรอและลักษณะการเสียดสีต่ำทำให้เหมาะสำหรับส่วนประกอบต่างๆ เช่น สปริง ล้อพัดลม เกียร์ ตัวเรือน เครื่องขูด และลูกกลิ้ง
ในฐานะผู้บุกเบิกอุตสาหกรรม Honscn เป็นผู้นำในการพัฒนาตลาดมาโดยตลอด เรารู้ว่าในการแข่งขันในตลาดที่รุนแรง มีเพียงการฝึกฝนตนเองอย่างต่อเนื่องเท่านั้นที่จะสามารถสร้างความสามารถในการแข่งขันที่ไม่อาจทำลายได้ ดังนั้นเราจึงยึดมั่นในนวัตกรรมทางเทคโนโลยีและบูรณาการการจัดการทางวิทยาศาสตร์เข้ากับทุกขั้นตอนการผลิตเพื่อให้แน่ใจว่าทุกขั้นตอนมีความถูกต้อง เราไม่เพียงมุ่งเน้นไปที่ชีพจรของตลาดในประเทศเท่านั้น แต่ยังสอดคล้องกับมาตรฐานสากลด้วยมุมมองระดับโลกเพื่อตรวจสอบแนวโน้มของอุตสาหกรรม เข้าใจชีพจรของ The Times ด้วยใจที่เปิดกว้าง โอบรับโลก คุณภาพเยี่ยม พิชิตอนาคต!
โปรดติดต่อเราเพื่อหารือเกี่ยวกับความต้องการของโครงการของคุณ!
การเจาะควบคุมเชิงตัวเลขเป็นวิธีการเจาะโดยใช้เทคโนโลยีการควบคุมแบบดิจิทัล มีลักษณะของความแม่นยำสูง ประสิทธิภาพสูง และความสามารถในการทำซ้ำสูง ด้วยการตั้งโปรแกรมล่วงหน้าเพื่อกำหนดตำแหน่งการเจาะ ความลึก ความเร็ว และพารามิเตอร์อื่นๆ เครื่องมือกล CNC จึงสามารถดำเนินการเจาะที่ซับซ้อนได้โดยอัตโนมัติ
เครื่องเจาะ CNC มักประกอบด้วยระบบควบคุม ระบบขับเคลื่อน ตัวเครื่อง และอุปกรณ์เสริม ระบบควบคุมเป็นแกนหลัก รับผิดชอบในการประมวลผลและส่งคำสั่ง ระบบขับเคลื่อนรับรู้ถึงการเคลื่อนที่ของแต่ละแกนของเครื่องมือกล ตัวเครื่องมีแท่นขุดเจาะและรองรับโครงสร้าง อุปกรณ์เสริม ได้แก่ ระบบระบายความร้อน ระบบกำจัดเศษ ฯลฯ เพื่อให้กระบวนการราบรื่น ในอุตสาหกรรมการผลิต การเจาะ CNC ถูกนำมาใช้กันอย่างแพร่หลายในการบินและอวกาศ ยานยนต์ การผลิตแม่พิมพ์ และสาขาอื่นๆ ซึ่งสามารถตอบสนองความต้องการในการเจาะชิ้นส่วนที่มีความแม่นยำสูงและปรับปรุงประสิทธิภาพการผลิตและคุณภาพของผลิตภัณฑ์
หลักการประมวลผลของเทคโนโลยีการเจาะ CNC ส่วนใหญ่ประกอบด้วยขั้นตอนต่อไปนี้:
1. การเขียนโปรแกรม: รูปแบบการเจาะและพารามิเตอร์ที่ออกแบบไว้จะถูกแปลงเป็นโปรแกรมประมวลผลที่ระบุเครื่องมือเครื่อง CNC ได้ โดยใช้แป้นพิมพ์บนแผงการทำงานหรือเครื่องป้อนข้อมูลเพื่อส่งข้อมูลดิจิทัลไปยังอุปกรณ์ CNC
2. การประมวลผลสัญญาณ: อุปกรณ์ CNC ทำการประมวลผลชุดกับสัญญาณอินพุต ส่งระบบฟีดเซอร์โวและคำสั่งการดำเนินการอื่นๆ และส่งสัญญาณ S, M, T และสัญญาณคำสั่งอื่นๆ ไปยังตัวควบคุมแบบตั้งโปรแกรมได้
3. การทำงานของเครื่องมือกล: หลังจากที่ตัวควบคุมแบบตั้งโปรแกรมได้รับ S, M, T และสัญญาณคำสั่งอื่นๆ จะควบคุมตัวเครื่องมือกลเพื่อดำเนินการคำสั่งเหล่านี้ทันที และตอบกลับการทำงานของตัวเครื่องมือกลไปยังอุปกรณ์ CNC ในแบบเรียลไทม์
4. การควบคุมการเคลื่อนที่: หลังจากที่ระบบเซอร์โวได้รับคำสั่งป้อนคำสั่ง แกนพิกัดของส่วนหลักของเครื่องมือกลขับเคลื่อน (กลไกป้อน) จะถูกแทนที่อย่างแม่นยำตามข้อกำหนดของคำสั่งอย่างเคร่งครัด และการประมวลผลชิ้นงานจะเสร็จสิ้นโดยอัตโนมัติ
5. ข้อเสนอแนะแบบเรียลไทม์: ในกระบวนการเคลื่อนที่ของแต่ละแกน อุปกรณ์ป้อนกลับการตรวจจับจะป้อนค่าที่วัดได้ของการกระจัดไปยังอุปกรณ์ควบคุมเชิงตัวเลขอย่างรวดเร็ว เพื่อเปรียบเทียบกับค่าคำสั่ง จากนั้นจึงออกคำแนะนำการชดเชยให้กับระบบเซอร์โวอย่างรวดเร็ว ความเร็วจนค่าที่วัดได้สอดคล้องกับค่าคำสั่ง
6. การป้องกันเกินขอบเขต: ในกระบวนการเคลื่อนที่ของแต่ละแกน หากเกิดปรากฏการณ์ "เกินช่วง" อุปกรณ์จำกัดสามารถส่งสัญญาณบางอย่างไปยังตัวควบคุมแบบตั้งโปรแกรมได้หรือโดยตรงไปยังอุปกรณ์ควบคุมเชิงตัวเลข ระบบควบคุมเชิงตัวเลขบนมือข้างหนึ่งจะส่งสัญญาณเตือน สัญญาณผ่านจอแสดงผล ในทางกลับกัน จะส่งคำสั่งหยุดไปยังระบบฟีดเซอร์โวเพื่อใช้การป้องกันเกินช่วง
เทคโนโลยีการเจาะ CNC มีลักษณะการประมวลผลดังต่อไปนี้:
1. ระบบอัตโนมัติระดับสูง: กระบวนการประมวลผลทั้งหมดถูกควบคุมโดยโปรแกรมที่เตรียมไว้ล่วงหน้า ซึ่งช่วยลดการแทรกแซงด้วยตนเองและปรับปรุงประสิทธิภาพการผลิต
2. ความแม่นยำสูง: สามารถรับรู้การเจาะที่มีความแม่นยำสูง ตำแหน่งที่แม่นยำ และรับประกันความแม่นยำของขนาดและรูปร่างของรู
3. ความสม่ำเสมอในการประมวลผลที่ดี: ตราบใดที่ขั้นตอนไม่เปลี่ยนแปลง คุณภาพของผลิตภัณฑ์จะคงที่และมีความสามารถในการทำซ้ำสูง
4 ความสามารถในการประมวลผลรูปร่างที่ซับซ้อน: สามารถแปรรูปรูปทรงและโครงสร้างของชิ้นงานที่ซับซ้อนได้หลากหลายเพื่อตอบสนองความต้องการที่หลากหลาย
5. การปรับตัวที่หลากหลาย: เหมาะสำหรับการเจาะวัสดุหลากหลายประเภท ทั้งโลหะ พลาสติก วัสดุคอมโพสิต ฯลฯ
6. ประสิทธิภาพการผลิตสูง: ระบบเปลี่ยนเครื่องมืออัตโนมัติที่รวดเร็วและความสามารถในการประมวลผลอย่างต่อเนื่อง ทำให้ระยะเวลาการประมวลผลสั้นลงอย่างมาก
7. ง่ายต่อการปรับและแก้ไข: พารามิเตอร์และกระบวนการเจาะสามารถปรับได้โดยการปรับเปลี่ยนโปรแกรมและมีความยืดหยุ่นสูง
8. สามารถรับรู้การเชื่อมโยงแบบหลายแกนได้: การเจาะสามารถทำได้หลายทิศทางในเวลาเดียวกัน ช่วยเพิ่มความซับซ้อนและความแม่นยำของการประมวลผล
9. การตรวจสอบอัจฉริยะ: สามารถตรวจสอบพารามิเตอร์ต่างๆ ในกระบวนการประมวลผลได้แบบเรียลไทม์ เช่น แรงตัด อุณหภูมิ ฯลฯ ค้นหาปัญหาได้ทันเวลาและปรับเปลี่ยนได้
10. ปฏิสัมพันธ์ระหว่างมนุษย์กับคอมพิวเตอร์ที่ดี: ผู้ปฏิบัติงานสามารถใช้งานและตรวจสอบผ่านอินเทอร์เฟซการทำงานได้อย่างง่ายดาย
ความแม่นยำในการตัดเฉือนของเทคโนโลยีการเจาะ CNC นั้นได้รับการรับรองโดยหลักๆ ในด้านต่อไปนี้:
1. ความแม่นยำของเครื่องมือกล: การเลือกเครื่องมือเครื่องเจาะ CNC ที่มีความแม่นยำสูง รวมถึงการออกแบบโครงสร้างของเครื่องมือกล กระบวนการผลิต และความแม่นยำในการประกอบ รางนำทางคุณภาพสูง ลีดสกรู และส่วนประกอบระบบส่งกำลังอื่นๆ สามารถลดข้อผิดพลาดในการเคลื่อนไหวได้
2. ระบบควบคุม: ระบบ CNC ขั้นสูงสามารถควบคุมวิถีการเคลื่อนที่และความเร็วของเครื่องมือกลได้อย่างแม่นยำ เพื่อให้ได้ตำแหน่งและการดำเนินการแก้ไขที่มีความแม่นยำสูง เพื่อให้มั่นใจในความแม่นยำของตำแหน่งและความลึกของการเจาะ
3. การเลือกเครื่องมือและการติดตั้ง: เลือกดอกสว่านที่เหมาะสมและมั่นใจในความแม่นยำในการติดตั้ง คุณภาพ รูปทรง และการสึกหรอของเครื่องมือล้วนส่งผลต่อความแม่นยำในการตัดเฉือน
4. การระบายความร้อนและการหล่อลื่น: ระบบระบายความร้อนและหล่อลื่นที่ดีสามารถลดการเกิดความร้อนในการตัด ลดการสึกหรอของเครื่องมือ รักษาเสถียรภาพของกระบวนการแปรรูป และช่วยเพิ่มความแม่นยำ
5. ความแม่นยำในการเขียนโปรแกรม: การตั้งโปรแกรมที่แม่นยำเป็นพื้นฐานในการรับรองความถูกต้องแม่นยำของเครื่องจักร การตั้งค่าพิกัดการเจาะ ความเร็วป้อน ความลึกของการตัด และพารามิเตอร์อื่นๆ ที่เหมาะสมเพื่อหลีกเลี่ยงข้อผิดพลาดในการตั้งโปรแกรม
6. การวัดและการชดเชย: ผ่านอุปกรณ์การวัดเพื่อตรวจจับชิ้นงานหลังการประมวลผล ผลการวัดจะถูกป้อนกลับไปยังระบบควบคุมเชิงตัวเลขเพื่อการชดเชยข้อผิดพลาด เพื่อปรับปรุงความแม่นยำในการประมวลผลให้ดียิ่งขึ้น
7. ตำแหน่งฟิกซ์เจอร์: เพื่อให้แน่ใจว่าตำแหน่งชิ้นงานบนเครื่องมือกลมีความแม่นยำและเชื่อถือได้ ลดผลกระทบของข้อผิดพลาดในการจับยึดต่อความแม่นยำในการตัดเฉือน
8. สภาพแวดล้อมการประมวลผล: อุณหภูมิ ความชื้น และสภาพแวดล้อมการทำงานที่สะอาดคงที่ช่วยรักษาความแม่นยำและเสถียรภาพของเครื่องมือกล เพื่อให้มั่นใจในความแม่นยำในการประมวลผล
9. การบำรุงรักษาปกติ: การบำรุงรักษาเครื่องมือกลอย่างสม่ำเสมอ รวมถึงการตรวจสอบและปรับความแม่นยำของเครื่องมือกล การเปลี่ยนชิ้นส่วนที่สึกหรอ ฯลฯ เพื่อให้มั่นใจว่าเครื่องมือกลอยู่ในสภาพการทำงานที่ดีอยู่เสมอ
ในเทคโนโลยีการเจาะ CNC คุณภาพพื้นผิวของการเจาะสามารถปรับปรุงได้โดยวิธีการดังต่อไปนี้:
1. เลือกเครื่องมือที่เหมาะสม: ตามข้อกำหนดของวัสดุแปรรูปและการเจาะ ให้เลือกดอกสว่านคุณภาพสูง คม และปรับให้เหมาะสมทางเรขาคณิต ตัวอย่างเช่น การใช้ดอกสว่านแบบเคลือบสามารถลดแรงเสียดทานและการสึกหรอ และปรับปรุงคุณภาพพื้นผิวได้
2. ปรับพารามิเตอร์การตัดให้เหมาะสม: กำหนดความเร็วตัด อัตราป้อน และความลึกของการตัดอย่างเหมาะสม ความเร็วตัดที่สูงขึ้นและการป้อนที่เหมาะสมมักจะช่วยให้ได้ผิวสำเร็จที่ดีขึ้น แต่ควรระมัดระวังเพื่อหลีกเลี่ยงการสึกหรอของเครื่องมือมากเกินไปหรือความไม่มั่นคงในการตัดเฉือนเนื่องจากพารามิเตอร์ที่ไม่เหมาะสม
3. ระบายความร้อนและหล่อลื่นเต็มรูปแบบ: การใช้สารหล่อลื่นระบายความร้อนที่มีประสิทธิภาพ กำจัดความร้อนในการตัดได้ทันเวลา ลดอุณหภูมิในการตัด ลดการสึกหรอของเครื่องมือและการก่อตัวของเนื้องอกของชิป ซึ่งจะช่วยปรับปรุงคุณภาพพื้นผิว
4. ควบคุมค่าเผื่อการประมวลผล: ก่อนการเจาะ ให้จัดเตรียมกระบวนการก่อนการประมวลผลอย่างสมเหตุสมผล ควบคุมค่าเผื่อของชิ้นส่วนการเจาะ และหลีกเลี่ยงผลกระทบที่มากเกินไปหรือไม่สม่ำเสมอต่อคุณภาพพื้นผิว
5. ปรับปรุงความแม่นยำและเสถียรภาพของเครื่องมือกล: บำรุงรักษาและสอบเทียบเครื่องมือกลอย่างสม่ำเสมอเพื่อให้มั่นใจในความแม่นยำในการเคลื่อนที่และความแข็งแกร่งของเครื่องมือกล และลดผลกระทบของการสั่นสะเทือนและข้อผิดพลาดต่อคุณภาพพื้นผิว
6. เพิ่มประสิทธิภาพเส้นทางการเจาะ: ใช้วิธีการป้อนและการดึงกลับที่เหมาะสมเพื่อหลีกเลี่ยงเสี้ยนและรอยขีดข่วนที่ช่องเปิด
7. ควบคุมสภาพแวดล้อมการประมวลผล: รักษาสภาพแวดล้อมการประมวลผลให้สะอาด อุณหภูมิและความชื้นคงที่ ลดการรบกวนของปัจจัยภายนอกต่อความแม่นยำในการประมวลผลและคุณภาพพื้นผิว
8. โดยใช้การเจาะทีละขั้นตอน: สำหรับรูที่มีเส้นผ่านศูนย์กลางใหญ่กว่าหรือต้องการความแม่นยำสูง สามารถใช้วิธีการเจาะแบบทีละขั้นตอนเพื่อค่อยๆ ลดขนาดรูรับแสงและปรับปรุงคุณภาพพื้นผิวได้
9. การรักษาผนังหลุม: หลังจากเจาะแล้ว หากจำเป็น อาจใช้วิธีการขัด การเจียร และการบำบัดอื่นๆ ในภายหลัง เพื่อปรับปรุงคุณภาพพื้นผิวของรูให้ดียิ่งขึ้น
เทคโนโลยีการเจาะ CNC ถูกนำมาใช้กันอย่างแพร่หลายในด้านต่อไปนี้:
1. สาขาการบินและอวกาศ: ส่วนประกอบที่ใช้ในการผลิตเครื่องบินและยานอวกาศ เช่น โครงสร้างปีก ส่วนประกอบเครื่องยนต์ ฯลฯ มีข้อกำหนดสูงในด้านความแม่นยำและคุณภาพ
2. อุตสาหกรรมการผลิตรถยนต์: การเจาะและการแปรรูปเสื้อสูบเครื่องยนต์ของรถยนต์ เปลือกเกียร์ ชิ้นส่วนแชสซี ฯลฯ เพื่อให้มั่นใจถึงการประสานงานของชิ้นส่วนที่แม่นยำ
3. การผลิตอุปกรณ์อิเล็กทรอนิกส์: มีบทบาทสำคัญในการเจาะแผงวงจรพิมพ์ (PCB) เพื่อให้มั่นใจในความถูกต้องของการเชื่อมต่อวงจร
4. การผลิตแม่พิมพ์: การเจาะที่มีความแม่นยำสูงสำหรับแม่พิมพ์ทุกชนิด เช่น แม่พิมพ์ฉีด แม่พิมพ์ปั๊ม ฯลฯ เพื่อตอบสนองโครงสร้างที่ซับซ้อนและข้อกำหนดที่มีความแม่นยำสูงของแม่พิมพ์
5. สาขาอุปกรณ์การแพทย์: ชิ้นส่วนที่มีความแม่นยำสำหรับการผลิตอุปกรณ์ทางการแพทย์ เช่น เครื่องมือผ่าตัด ชิ้นส่วนขาเทียม เป็นต้น
6. อุตสาหกรรมพลังงาน: รวมถึงอุปกรณ์ผลิตพลังงานลม อุปกรณ์ปิโตรเคมี และการขุดเจาะชิ้นส่วนอื่นๆ
7. การผลิตทางทะเล: การเจาะและการแปรรูปชิ้นส่วนเครื่องยนต์ทางทะเล ชิ้นส่วนโครงสร้างตัวถัง ฯลฯ
8. อุตสาหกรรมการทหาร: การผลิตชิ้นส่วนอาวุธและอุปกรณ์เพื่อให้มั่นใจถึงประสิทธิภาพและความน่าเชื่อถือ
กล่าวโดยสรุป เทคโนโลยีการเจาะ CNC มีตำแหน่งที่ขาดไม่ได้ในทุกสาขาของอุตสาหกรรมสมัยใหม่ เนื่องจากมีความแม่นยำสูง มีประสิทธิภาพและความยืดหยุ่นสูง
แนวโน้มการพัฒนาเทคโนโลยีการเจาะ CNC สะท้อนให้เห็นเป็นหลักในด้านต่อไปนี้:
1. ความแม่นยำและความเร็วที่สูงขึ้น: ด้วยการปรับปรุงคุณภาพผลิตภัณฑ์และข้อกำหนดประสิทธิภาพการผลิตของอุตสาหกรรมการผลิตอย่างต่อเนื่อง เทคโนโลยีการเจาะ CNC จะพัฒนาไปในทิศทางของความแม่นยำในการกำหนดตำแหน่งที่สูงขึ้น ความแม่นยำในการทำซ้ำ และความเร็วในการเจาะที่เร็วขึ้น
2. ความฉลาดและระบบอัตโนมัติ: การบูรณาการปัญญาประดิษฐ์ การเรียนรู้ของเครื่อง และเทคโนโลยีอื่นๆ เพื่อให้เกิดการเขียนโปรแกรมอัตโนมัติ การเพิ่มประสิทธิภาพพารามิเตอร์การประมวลผลโดยอัตโนมัติ การวินิจฉัยข้อผิดพลาดอัตโนมัติ และฟังก์ชันการชดเชยข้อผิดพลาดอัตโนมัติ ช่วยลดการแทรกแซงด้วยตนเอง ปรับปรุงประสิทธิภาพการประมวลผล และเสถียรภาพด้านคุณภาพ
3. การเชื่อมโยงแบบหลายแกนและการตัดเฉือนแบบคอมโพสิต: การพัฒนาเทคโนโลยีการขุดเจาะแบบหลายแกนสามารถเจาะรูปร่างที่ซับซ้อนและหลายมุมได้สำเร็จในการจับยึดเพียงครั้งเดียว ในเวลาเดียวกัน ด้วยกระบวนการประมวลผลอื่น ๆ เช่น การกัด การบด ฯลฯ เพื่อให้ได้พลังงานจากเครื่องจักรหลายเครื่อง ปรับปรุงประสิทธิภาพและความแม่นยำในการประมวลผล
4. การคุ้มครองสิ่งแวดล้อมสีเขียว: มุ่งเน้นไปที่การประหยัดพลังงานและลดการใช้พลังงานโดยใช้ระบบขับเคลื่อนที่มีประสิทธิภาพมากขึ้นและเทคโนโลยีประหยัดพลังงานเพื่อลดการใช้พลังงาน ในขณะเดียวกัน การใช้และการบำบัดของน้ำมันตัดกลึงก็ได้รับการปรับปรุงให้เหมาะสมเพื่อลดผลกระทบต่อสิ่งแวดล้อม
5. การย่อส่วนและขนาดใหญ่: ในแง่หนึ่ง มันตอบสนองความต้องการที่มีความแม่นยำสูงและมีเสถียรภาพสูงของการเจาะชิ้นส่วนขนาดเล็ก ในทางกลับกัน สามารถเจาะชิ้นส่วนโครงสร้างขนาดใหญ่ เช่น เรือและสะพานได้
6. เครือข่ายและการควบคุมระยะไกล: ผ่านเครือข่ายเพื่อให้เกิดการเชื่อมต่อระหว่างอุปกรณ์ การตรวจสอบระยะไกล การวินิจฉัย และการบำรุงรักษา ปรับปรุงประสิทธิภาพและความสะดวกในการจัดการการผลิต
7. ความสามารถในการปรับตัวของวัสดุใหม่: สามารถปรับให้เข้ากับวัสดุใหม่ๆ เช่น ซูเปอร์อัลลอย วัสดุคอมโพสิต และกระบวนการขุดเจาะอื่นๆ พัฒนาเครื่องมือและกระบวนการที่เกี่ยวข้อง
8. การเพิ่มประสิทธิภาพของการโต้ตอบระหว่างมนุษย์กับคอมพิวเตอร์: อินเทอร์เฟซการโต้ตอบระหว่างมนุษย์และคอมพิวเตอร์ที่เป็นมิตรและสะดวกยิ่งขึ้นทำให้ผู้ปฏิบัติงานสามารถตั้งโปรแกรม ใช้งาน และติดตามได้ง่ายขึ้น
เนื่องจากเป็นวิธีการประมวลผลที่สำคัญในอุตสาหกรรมการผลิตสมัยใหม่ เทคโนโลยีการเจาะ CNC มีข้อดีหลายประการและมีขอบเขตการใช้งานที่หลากหลาย หลักการของการตัดเฉือนทำให้การเจาะมีความแม่นยำสูงผ่านการตั้งโปรแกรม การประมวลผลสัญญาณ การใช้เครื่องมือกล และขั้นตอนอื่นๆ ในแง่ของคุณลักษณะ มีข้อดีของระบบอัตโนมัติระดับสูง ความแม่นยำสูง ความสม่ำเสมอที่ดี และการปรับตัวที่หลากหลาย เพื่อให้มั่นใจในความแม่นยำในการตัดเฉือน ขึ้นอยู่กับหลายปัจจัย เช่น ความแม่นยำของเครื่องมือกล ระบบควบคุม และการเลือกเครื่องมือ สามารถปรับปรุงคุณภาพของพื้นผิวการเจาะได้โดยการเลือกเครื่องมือตัดและปรับพารามิเตอร์การตัดให้เหมาะสม ในอนาคต แนวโน้มการพัฒนาของเทคโนโลยีการเจาะ CNC จะมุ่งไปสู่ความแม่นยำและความเร็วที่สูงขึ้น ความฉลาดและระบบอัตโนมัติ การเชื่อมโยงแบบหลายแกนและการประมวลผลคอมโพสิต การคุ้มครองสิ่งแวดล้อมสีเขียว การย่อขนาดและขนาดใหญ่ เครือข่ายและการควบคุมระยะไกล การปรับตัวของวัสดุใหม่และ การเพิ่มประสิทธิภาพปฏิสัมพันธ์ระหว่างมนุษย์กับคอมพิวเตอร์ คาดการณ์ได้ว่าเทคโนโลยีการเจาะ CNC จะยังคงสร้างสรรค์และพัฒนาต่อไป โดยให้การสนับสนุนที่มีประสิทธิภาพมากขึ้นสำหรับความก้าวหน้าของอุตสาหกรรมการผลิต
ติดต่อกลับ: อาดา ลี่
โทร:86 17722440307
วอทส์แอพพ์: +86 17722440307
อีเมล: Ada@honscn.com
เพิ่ม: 4F เลขที่. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, หลงหัว เซินเจิ้น 518109 CHN