Honscn se centra en servicios profesionales de mecanizado CNC
desde 2003.
Innovación, artesanía y estética se unen en este impresionante mecanizado de piezas CNC personalizado. En Honscn Co., Ltd, contamos con un equipo de diseño dedicado a mejorar constantemente el diseño del producto, permitiendo que el producto siempre satisfaga las últimas demandas del mercado. Solo se adoptarán materiales de la más alta calidad en la producción y se llevarán a cabo muchas pruebas sobre el rendimiento del producto después de la producción. Todo esto contribuye en gran medida a la creciente popularidad de este producto.
HONSCN Los productos han recibido muchos comentarios favorables desde su lanzamiento. Gracias a su alto rendimiento y precio competitivo, se venden bien en el mercado y atraen una base de clientes más grande en todo el mundo. Y la mayoría de nuestros clientes objetivo nos vuelven a comprar porque han logrado un crecimiento en las ventas y más beneficios, y también una mayor influencia en el mercado.
En Honscn, los clientes no necesitan preocuparse por el transporte de productos como piezas de mecanizado CNC personalizadas. Al cooperar con empresas de logística confiables, garantizamos que los productos lleguen de manera segura y efectiva.
No se puede hacer ninguna máquina sin agujeros. Para conectar las piezas entre sí, se requiere una variedad de diferentes tamaños de orificios para tornillos, pasadores o remaches; Para fijar las piezas de la transmisión, se necesitan varios orificios de montaje; Las propias piezas de la máquina también tienen muchos tipos de orificios (como orificios de aceite, orificios de proceso, orificios de reducción de peso, etc.). La operación de mecanizar agujeros para que cumplan con los requisitos se denomina mecanizado de agujeros.
La superficie del orificio interior es una de las superficies importantes de las piezas mecánicas. En las piezas mecánicas, las piezas con agujeros generalmente representan entre el 50% y el 80% del número total de piezas. Los tipos de agujeros también son diversos, hay agujeros cilíndricos, agujeros cónicos, agujeros roscados y agujeros perfilados. Los agujeros cilíndricos comunes se dividen en agujeros generales y agujeros profundos, y los agujeros profundos son difíciles de procesar.
1. En primer lugar, la diferencia entre el taladro en U y el taladro ordinario es que el taladro en U utiliza la hoja periférica y la hoja central; en este ángulo, la relación entre el taladro en U y el taladro duro ordinario es en realidad similar a la relación entre la herramienta de torneado de sujeción de la máquina. y la herramienta de torneado de soldadura, y la hoja se puede reemplazar directamente después de que la herramienta se desgaste sin necesidad de reafilar. Después de todo, el uso de hojas indexables aún ahorra material que un taladro duro completo, y la consistencia de la hoja hace que sea más fácil controlar el tamaño de la pieza.
2. La rigidez de la broca en U es mejor, se puede utilizar una velocidad de avance alta y el diámetro de procesamiento de la broca en U es mucho mayor que el de la broca ordinaria, el máximo puede alcanzar D50 ~ 60 mm, por supuesto, la broca en U no puede ser demasiado pequeña. debido a las características de la pala.
3. El taladro U encuentra una variedad de materiales, solo es necesario reemplazar el mismo tipo de diferentes grados de hoja, el taladro duro no es tan conveniente.
4. En comparación con la perforación dura, la precisión del orificio perforado con perforación en U es aún mayor y el acabado es mejor, especialmente cuando el enfriamiento y la lubricación no son suaves, es más obvio y la perforación en U puede corregir la precisión de la posición del orificio. Y no se puede realizar una perforación dura, y la perforación en U se puede utilizar como cuchilla de perforación.
1. El taladro en U puede perforar agujeros en superficies con ángulos de inclinación inferiores a 30 ~ sin reducir los parámetros de corte.
2. Una vez que los parámetros de corte de la perforación en U se reducen en un 30%, se puede lograr un corte intermitente, como el procesamiento de orificios que se cruzan, orificios que se cruzan y perforación de fase.
3. La perforación en U puede realizar la perforación de orificios de varios pasos y puede taladrar, achaflanar y perforar excéntricamente.
4. Al perforar, las virutas de perforación son en su mayoría virutas cortas, y el sistema de enfriamiento interno se puede utilizar para una extracción segura de las virutas, sin limpiar las virutas de la herramienta, lo que favorece la continuidad del procesamiento del producto, acorta el tiempo de procesamiento y mejorar la eficiencia.
5. Bajo la condición de relación longitud-diámetro estándar, no se requiere extracción de viruta al perforar con broca en U.
6. Taladro en U para herramienta indexable, desgaste de la hoja sin afilar, reemplazo más conveniente y bajo costo.
7. El valor de rugosidad de la superficie del orificio procesado mediante perforación en U es pequeño y el rango de tolerancia es pequeño, lo que puede reemplazar el trabajo de algunas herramientas de perforación.
8. El uso de perforación en U no necesita perforar previamente el orificio central, y la superficie inferior del orificio ciego procesada es relativamente recta, lo que elimina la perforación de fondo plano.
9. El uso de la tecnología de perforación en U no solo puede reducir las herramientas de perforación, y debido a que la perforación en U es el cabezal de la hoja de carburo cementado, su vida útil es más de diez veces mayor que la del taladro ordinario, al mismo tiempo, hay cuatro filos de corte en la Hoja, el desgaste de la hoja se puede reemplazar en cualquier momento del corte, el nuevo corte ahorra mucho tiempo de pulido y reemplazo de la herramienta, puede mejorar la eficiencia promedio de 6 a 7 veces.
1. Cuando se utiliza el taladro en U, la rigidez de la máquina herramienta y la neutralidad de la herramienta y la pieza de trabajo son altas, por lo que el taladro en U es adecuado para su uso en máquinas herramienta CNC de alta potencia, alta rigidez y alta velocidad.
2. Cuando se utiliza perforación en U, la hoja central debe usarse con buena tenacidad y la hoja periférica debe usarse con hojas relativamente afiladas.
3. Al procesar diferentes materiales, debe elegir una hoja de ranura diferente; en circunstancias normales, avance pequeño, tolerancia pequeña, relación entre longitud y diámetro de perforación en U, elija la hoja de ranura con menor fuerza de corte; por el contrario, mecanizado en desbaste, tolerancia grande, longitud de perforación en U La relación entre diámetro y diámetro es pequeña, luego elija la hoja ranurada con mayor fuerza de corte.
4. Al utilizar la perforación en U, debemos considerar la potencia del husillo de la máquina herramienta, la estabilidad de la sujeción de la perforación en U, la presión y el flujo del fluido de corte y controlar el efecto de eliminación de viruta de la perforación en U; de lo contrario, afectará en gran medida la rugosidad de la superficie y Precisión dimensional del agujero.
5. Al instalar la broca en U, es necesario hacer que el centro de la broca en U coincida con el centro de la pieza de trabajo y sea perpendicular a la superficie de la pieza de trabajo.
6. Cuando se utiliza perforación en U, se deben seleccionar los parámetros de corte apropiados según los diferentes materiales de las piezas.
7. Al perforar cortes de prueba, asegúrese de no reducir el avance o la velocidad a voluntad por precaución y miedo, de modo que la hoja del taladro en U se dañe o el taladro en U se dañe.
8. Cuando se utiliza el procesamiento de broca en U, cuando la hoja está desgastada o dañada, es necesario analizar cuidadosamente las razones y reemplazar la hoja con una mejor tenacidad o más resistente al desgaste.
9. Cuando se utiliza una broca en U para procesar orificios escalonados, es necesario comenzar a procesar desde orificios grandes y luego procesar orificios pequeños.
10. Al perforar, preste atención a que el líquido de corte tenga suficiente presión para eliminar las virutas.
11. La hoja utilizada en el centro y el borde de la broca en U es diferente, no debe usarse incorrectamente, de lo contrario dañará la varilla de perforación en U.
12. Al taladrar con broca en U, se puede utilizar la rotación de la pieza de trabajo, la rotación de la herramienta y la rotación simultánea de la herramienta y la pieza de trabajo, pero cuando la herramienta se mueve en un modo de avance lineal, el método más común es utilizar el modo de rotación de la pieza de trabajo.
13. Se debe considerar el rendimiento del torno al mecanizar en el carro CNC y los parámetros de corte deben ajustarse adecuadamente, generalmente reduciendo la velocidad y el bajo avance.
1. La hoja se daña demasiado rápido, es fácil de romper y el costo de procesamiento aumenta.
2. Durante el procesamiento se emite un silbido áspero y el estado de corte es anormal.
3. Jitter de la máquina, que afecta la precisión del mecanizado de las máquinas herramienta.
1. La instalación del taladro en U debe prestar atención a las direcciones positiva y negativa, qué hoja está hacia arriba, cuál hacia abajo, cuál mira hacia adentro y cuál mira hacia afuera.
2. La altura central de la perforación en U debe corregirse, de acuerdo con el tamaño de su diámetro para requerir el rango de control, generalmente controlado dentro de 0,1 mm, cuanto menor sea el diámetro de la perforación en U, mayores serán los requisitos de altura central, la altura central no es buena para la perforación en U Se desgastarán dos lados, la apertura será más grande, la vida útil de la hoja se acortará y la perforación en U pequeña es fácil de romper.
3. El taladro U tiene requisitos muy altos para el refrigerante, se debe garantizar que el refrigerante se emita desde el centro del taladro U, cuanto mayor sea la presión del refrigerante, mejor, el exceso de salida de agua de la torre se puede bloquear para garantizar su presión.
4, parámetros de corte de perforación U en estricta conformidad con las instrucciones del fabricante, pero también para considerar diferentes marcas de cuchillas, potencia de la máquina, el procesamiento puede referirse al valor de carga del tamaño de la máquina herramienta, realizar los ajustes apropiados, generalmente usando alta velocidad y bajo avance. .
5. Hoja de taladro U para verificar con frecuencia, reemplazo oportuno, diferentes hojas no se pueden instalar al revés.
6. De acuerdo con la dureza de la pieza de trabajo y la longitud de la suspensión de la herramienta para ajustar la cantidad de avance, cuanto más dura sea la pieza de trabajo, mayor será la suspensión de la herramienta y menor será la cantidad de corte.
7. No utilice un desgaste excesivo de la hoja, se debe registrar en la producción el desgaste de la hoja y la relación entre el número de piezas de trabajo que se pueden mecanizar, el reemplazo oportuno de hojas nuevas.
8. Utilice suficiente refrigerante interno con la presión correcta. La función principal del refrigerante es la eliminación de virutas y el enfriamiento.
9.El taladro U no se puede utilizar para procesar materiales más blandos, como cobre, aluminio blando, etc.
Honscn tiene más de diez años de experiencia en mecanizado CNC, especializándose en mecanizado CNC, procesamiento de piezas mecánicas de hardware y procesamiento de piezas de equipos de automatización. Procesamiento de piezas de robots, procesamiento de piezas de vehículos aéreos no tripulados, procesamiento de piezas de bicicletas, procesamiento de piezas médicas, etc. Es uno de los proveedores de mecanizado CNC de alta calidad. En la actualidad, la empresa cuenta con más de 50 conjuntos de centros de mecanizado CNC, rectificadoras, fresadoras y equipos de prueba de alta precisión y calidad para brindar a los clientes servicios de procesamiento de repuestos CNC de precisión y alta calidad.
1 Cambio de herramienta del cargador tipo sombrero. Generalmente se adopta el modo de cambio de herramienta de dirección fija y el número de herramienta es fijo correspondiente al número de asiento de la herramienta. La acción de cambio de herramienta se realiza mediante el movimiento lateral del almacén de herramientas y el movimiento hacia arriba y hacia abajo del husillo, lo que se denomina abreviadamente modo de cambio de herramienta del husillo. Debido a que no tiene manipulador de cambio de herramienta, la acción de selección de herramienta no se puede preseleccionar antes de la acción de cambio de herramienta. La instrucción de cambio de herramienta y la instrucción de selección de herramienta generalmente se escriben en el mismo segmento de programa y el formato de instrucción es el siguiente:M06 T
Cuando se ejecuta el comando, el almacén de herramientas primero gira el portaherramientas correspondiente al número de herramienta en el husillo a la posición de cambio de herramienta y cambia la herramienta en el husillo nuevamente al portaherramientas, y luego el almacén de herramientas gira la herramienta especificada. en el comando a la posición de cambio de herramienta y cambia el husillo. Para este almacén de herramientas, incluso si TX x se ejecuta antes de M06, la herramienta no se puede preseleccionar, * la acción de selección final de herramienta aún se ejecuta cuando se ejecuta M06. Si no hay ningún TX X delante de M06, el sistema dará una alarma.2 Cambio de herramienta del cargador de discos y cadena
La mayoría de ellos utilizan el modo de cambio de herramienta de dirección aleatoria. La relación correspondiente entre el número de herramienta y el número de asiento de herramienta es aleatoria, pero el sistema NC puede recordar su relación correspondiente. El cambio de herramienta de este almacén de herramientas depende del manipulador. La acción del comando y cambio de herramienta es: el comando de herramienta TX controla la rotación del cargador de herramientas y gira la herramienta seleccionada a la posición de trabajo de cambio de herramienta, mientras que el comando de cambio de herramienta M06 controla la acción del manipulador de cambio de herramienta para realizar el Intercambio de herramientas entre la herramienta del husillo y la posición de cambio de herramienta del almacén de herramientas. El comando de selección de herramienta y el comando de cambio de herramienta pueden estar en el mismo segmento de programa o escribirse por separado. Las acciones correspondientes a la selección de herramienta y al comando de cambio de herramienta también se pueden operar de forma simultánea o por separado. El formato de instrucción es el siguiente.:
Tx x M06; Cuando se ejecuta el comando, el almacén de herramientas primero gira la herramienta TX a la posición de cambio de herramienta y luego el manipulador intercambia la herramienta del almacén de herramientas con la herramienta del husillo para realizar el propósito de cambiar la herramienta TX. al husillo. Después de leer los dos métodos anteriores, se puede ver que el método 2 superpone la acción de selección de herramienta con la acción de mecanizado, de modo que al cambiar la herramienta, no es necesario seleccionar la herramienta y cambiar la herramienta directamente, lo que mejora la eficiencia del trabajo.
Como se mencionó anteriormente, el comando de cambio de herramienta del almacén de herramientas está relacionado con el fabricante de la máquina herramienta. Por ejemplo, algunos almacenes de herramientas requieren que no solo el eje Z deba regresar al punto de cambio de herramienta, sino que también el eje Y deba regresar al punto de cambio de herramienta. El formato del programa es el siguiente.:
Al escribir las instrucciones de selección y cambio de herramientas en la misma sección del programa, las reglas de ejecución de herramientas de diferentes fabricantes también pueden ser diferentes. En su caso, independientemente del orden de redacción, se seguirán las reglas de selección y cambio de herramienta. Algunas reglas estipulan que el comando de selección de herramienta debe escribirse antes de ejecutar el comando de cambio de herramienta. De lo contrario, la acción es cambiar la herramienta primero y luego seleccionarla, como se muestra en el programa anterior. En este caso, si el comando de selección de herramienta no se escribe antes de ejecutar el comando M06, el sistema dará una alarma.
"El mecanizado CNC suele tener muchas ventajas. Desde la perspectiva de las aplicaciones automotrices, aeroespaciales y de consumo, se utiliza ampliamente en la fabricación de componentes en estos campos. Y, en cierto modo, tiene propiedades similares a las del metal".
El poliformaldehído, o POM, es una fascinante resina plástica que se utiliza ampliamente en diversos campos industriales. Las industrias aeroespacial, automotriz y electrónica son importantes consumidoras de este polímero. El procesamiento de poliformaldehído, especialmente cuando se utiliza en el campo de la fabricación, puede lograr un procesamiento rápido y eficiente. Además, beneficia a los usuarios debido a su alta resistencia mecánica, rigidez, maquinabilidad y variedad de opciones de calidad.
Este artículo contiene los siguientes detalles clave del mecanizado CNC POM, así como sus características básicas en cuanto a funciones, aplicaciones, ventajas, etc. Empecemos.
POM, un homopolímero, también se conoce como Delrin. Se adopta ampliamente como termoplástico de grado de ingeniería para la fabricación de prototipos para uso industrial. Suele presentarse en dos formas: copolímeros u homopolímeros. Desde prototipos complejos hasta piezas de máquinas flexibles, aporta beneficios económicos a la fabricación.
Los diseñadores de productos pueden beneficiarse de su integridad estructural, diversidad de colores y características de rigidez. Además, su confiabilidad y resistencia en ambientes húmedos lo hacen adecuado para aplicaciones marinas, médicas y aeroespaciales. POM, suele tener algún otro nombre, como por ejemplo; Acetal (acetal), poliacetal (poliacetal), poliformaldehído, etc.
El formaldehído POM o el poliacetal tienen importantes ventajas cuando se utilizan en el mecanizado. Benefíciese de tecnologías líderes como el mecanizado de precisión POM o el mecanizado CNC; Por ejemplo; Fresado, taladrado, punzonado y punzonado. Además, su versatilidad en varios grados resulta muy beneficiosa para los expertos en mecanizado. Delrin también es compatible con tecnologías de corte avanzadas; Los ejemplos incluyen procesos de extrusión y corte por láser.
Algunas de las características principales del mecanizado CNC incluyen:
El mecanizado CNC de plástico se puede implementar mediante diversas tecnologías; Por ejemplo; Fresado CNC, taladrado CNC, tornos, rectificado, corte y punzonado. Su facilidad de procesamiento afecta mucho a su uso en estos procesos. Además, también ha recibido mucha atención por su gran alargamiento. Ahora, analicemos el método para obtener los mejores resultados en el mecanizado CNC de POM.
El proceso comienza con el diseño y la programación asistidos por computadora para mejorar los niveles de precisión, calidad y optimización. Después de la configuración virtual, las instrucciones se envían a la máquina CNC de la siguiente forma: Código G para procesamiento posterior de prospectos
Luego se realiza una operación de corte en el material de la pieza de trabajo (POM) para obtener las dimensiones y dimensiones óptimas. Se recomienda utilizar refrigerante al mecanizar Delrin a alta velocidad para evitar operaciones de procesamiento ineficaces, como acumulación de viruta o sobrecalentamiento.
Las siguientes son algunas de las técnicas comúnmente utilizadas para procesar fuerte poliformaldehído o POM.
1. Fresado CNC POM
El fresado CNC se utiliza a menudo para mecanizar piezas POM. Las herramientas con bordes afilados ayudan a conseguir el mejor ángulo, así como el mejor acabado de la superficie. Por lo tanto, es razonable utilizar una fresa de una sola ranura para procesar Delrin. Estos cortadores evitan la acumulación de viruta durante las operaciones de mecanizado.
2.Perforación CNC POM
Las brocas helicoidales y centrales estándar son las más adecuadas para procesar resinas de poliformaldehído. Estos materiales tienen bordes fuertes y afilados que, en última instancia, permiten operaciones de fresado suaves en Delrin. La velocidad de corte óptima del POM perforado debe ser de aproximadamente 1500 rpm y el ángulo de torsión del labio 118°.
3. Torneado CNC POM
La operación de torneado CNC de POM es similar a la operación de torneado de latón. Los mejores resultados se pueden lograr manteniendo el giro a alta velocidad al mismo ritmo que el avance medio. Para evitar interferencias y problemas de acumulación excesiva de viruta, se debe utilizar un rompevirutas para operaciones de torneado de precisión.
4. Supresión y perforación
Corte y estampado, ambos métodos se prefieren para piezas complejas de tamaño pequeño y mediano. Durante el funcionamiento, las grietas en la chapa pueden provocar problemas importantes debido a un procesamiento inadecuado. Para eliminar este problema lo mejor es precalentar la placa de Delrin y utilizar un punzón manual o alto.
Aspectos destacados: "Durante el mecanizado CNC de POM, es importante mantener el POM apretado o sujetarlo y utilizar una herramienta de acero duro o carburo.
Los dos grados de acetal más comunes son muy útiles para el mecanizado CNC; Resina de poliformaldehído 150, resina de poliformaldehído; 100 (AF). Evaluemos su compatibilidad;
1. Delrín 150
Derlin 150 pertenece a la familia de los homopolímeros de acetal. Tiene alta resistencia mecánica, rigidez y resistencia al desgaste. Gracias a estas características únicas, es ideal para el mecanizado CNC de engranajes, casquillos, juntas y acabados interiores y exteriores de automóviles. Además, su estabilidad en condiciones de alta temperatura lo hace ideal para riego y piezas de transportadores.
2. Delrín 100(A)
Delrin 100 A está integrado con politetrafluoroetileno (PTFE) para mejorar la estabilidad mecánica y la viscosidad. Se utiliza ampliamente en sistemas de engranajes o componentes que requieren características de baja fricción. Además, tiene una fuerte resistencia a la humedad y a los productos químicos. Además, elimina la característica de autolubricación (aceite o grasa), lo que lo diferencia de otros grados de Delrin.
El acabado superficial deseado juega un papel clave en el proceso de mecanizado. Cuando se trata de tratamiento de superficies se suelen emplear dos opciones: mecanizado y arenado. Aquí hay una breve introducción a estos;
Después de procesar
El mecanizado CNC a menudo deja una superficie o textura irregular en la superficie de la pieza de acetal. Cuando se necesitan piezas rugosas o texturizadas para mejorar las propiedades de fricción de las piezas, se prefiere el tratamiento superficial. El rango de rugosidad típico que se puede lograr mediante mecanizado es de aproximadamente 32 a 250 micropulgadas (0,8 a 6,3 micrones).
Estallido de perlas
En la mayoría de los casos, las herramientas de mecanizado dejan marcas en las piezas de acetal. El pulido con chorro de arena se utiliza a menudo para evitar marcas de herramientas y mejorar el efecto visual de las piezas mecanizadas en Delrin. Funciona liberando perlas de vidrio o partículas finas sobre la superficie de las piezas mecanizadas a alta presión. Además, mejora la durabilidad y proporciona una apariencia valiosa, suave, mate, estéticamente agradable y pulida satinada a las piezas de máquinas de resina de poliformaldehído.
Hay otras técnicas; Por ejemplo; Anodizado, pulido, pintado y estampado. Sin embargo, la mayoría de los ingenieros de diseño prefieren las dos opciones anteriores debido a su viabilidad económica.
Sin embargo, existen enormes beneficios al utilizar Delrin para el mecanizado CNC. Además, también tiene algunas desventajas. Aquí están las limitaciones de Delrin;
Adhesión : Aunque el acetal tiene una excelente resistencia química, a menudo presenta desafíos al unir con adhesivos fuertes. Para superar este problema, es posible que los diseñadores deban emplear opciones de superficies postratadas para obtener mejores resultados.
Sensibilidad térmica : La sensibilidad térmica es un tema digno de mención para los fabricantes de diseños. La capacidad de los alcoholes de acetona para resistir condiciones de alta temperatura es muy significativa. Sin embargo, es muy adecuado para aplicaciones donde la estabilidad mecánica es crítica. Pero en algunos casos, cuando se expone a condiciones de alta temperatura, habrá problemas de deformación o distorsión. En comparación con el nailon, el nailon muestra una mayor resistencia y resistencia estructural incluso en entornos hostiles.
Alta inflamabilidad : El procesamiento de resina de poliformaldehído enfrenta el desafío de la inflamabilidad. Es sensible a temperaturas superiores a los 121 grados centígrados. Se recomienda utilizar siempre un refrigerante, como refrigerante de aire, para mantener la temperatura durante la operación de procesamiento. Para superar o controlar los problemas de inflamabilidad, también es necesario utilizar un extintor de incendios Clase A al procesar POM.
Desde interiores de automóviles hasta componentes aeroespaciales, Drin se utiliza en una amplia gama de aplicaciones. Echemos un vistazo a algunas de sus aplicaciones clave en la fabricación;
Industria médica
POM es un material importante para componentes o equipos médicos. Como termoplástico de ingeniería, cumple con los estrictos estándares de calidad de la FDA o ISO. Sus aplicaciones van desde recintos y carcasas hasta componentes funcionales complejos; Por ejemplo; Jeringas desechables, instrumentos quirúrgicos, válvulas, inhaladores, prótesis e implantes médicos.
Industria del automóvil
Derlin suministra una amplia gama de componentes de automoción a la industria del automóvil. Su alta resistencia mecánica, baja fricción y resistencia al desgaste permiten a los ingenieros utilizarlo para fabricar piezas importantes para automóviles, motocicletas y vehículos eléctricos. Algunos ejemplos comunes incluyen: carcasas articuladas, sistemas de bloqueo y unidades transmisoras de combustible.
Electrodomésticos de consumo
Cuando se trata de aplicaciones convenientes, el procesamiento de poliformaldehído describe varios beneficios importantes. Los expertos en fabricación lo utilizan para fabricar cremalleras, utensilios de cocina, lavadoras y clips.
Piezas de maquinaria industrial
La gran fortaleza de Derlin le permite ser utilizado en la fabricación de piezas industriales. Su capacidad para resistir el desgaste y sus características de baja fricción lo hacen ideal para componentes como resortes, ruedas de ventilador, engranajes, carcasas, raspadores y rodillos.
Como pionero de la industria, Honscn está siempre a la vanguardia de los desarrollos del mercado. Sabemos que en la feroz competencia del mercado, sólo perfeccionándonos constantemente podremos crear una competitividad indestructible. Por lo tanto, nos adherimos a la innovación tecnológica e integramos la gestión científica en cada eslabón de producción para garantizar que cada paso sea preciso. No sólo nos centramos en el pulso del mercado interno, sino también en línea con los estándares internacionales, con una perspectiva global para examinar las tendencias de la industria, toma el pulso de The Times. Con la mente abierta, abraza el mundo, con excelente calidad, ¡gana el futuro!
¡No dude en contactarnos para discutir las necesidades de su proyecto!
La perforación con control numérico es un método de perforación que utiliza tecnología de control digital. Tiene las características de alta precisión, alta eficiencia y alta repetibilidad. Al preprogramar para establecer la posición de perforación, la profundidad, la velocidad y otros parámetros, las máquinas herramienta CNC pueden completar automáticamente operaciones de perforación complejas.
La máquina perforadora CNC generalmente se compone de un sistema de control, un sistema de accionamiento, un cuerpo de la máquina y un dispositivo auxiliar. El sistema de control es el núcleo, responsable de procesar y enviar instrucciones; El sistema de accionamiento realiza el movimiento de cada eje de la máquina herramienta; El cuerpo de la máquina proporciona una plataforma de perforación y soporte estructural; Los dispositivos auxiliares incluyen un sistema de enfriamiento, un sistema de eliminación de virutas, etc., para garantizar un proceso sin problemas. En la industria manufacturera, la perforación CNC se usa ampliamente en los campos aeroespacial, automotriz, de fabricación de moldes y otros campos, lo que puede satisfacer la demanda de perforación de piezas de alta precisión y mejorar la eficiencia de la producción y la calidad del producto.
El principio de procesamiento de la tecnología de perforación CNC incluye principalmente los siguientes pasos:
1. Programación: El patrón de perforación diseñado y los parámetros se convierten en un programa de procesamiento identificable de la máquina herramienta CNC, a través del teclado en el panel de operación o la máquina de entrada para enviar información digital al dispositivo CNC.
2. Procesamiento de señal: El dispositivo CNC realiza una serie de procesamiento en la señal de entrada, envía el servosistema de alimentación y otros comandos de ejecución, y envía S, M, T y otras señales de comando al controlador programable.
3. Ejecución de máquina herramienta: Después de que el controlador programable recibe S, M, T y otras señales de comando, controla el cuerpo de la máquina herramienta para ejecutar estos comandos inmediatamente y retroalimenta la ejecución del cuerpo de la máquina herramienta al dispositivo CNC en tiempo real.
4. Control de desplazamiento: Después de que el servosistema recibe el comando de ejecución de avance, los ejes de coordenadas del cuerpo principal de la máquina herramienta impulsora (mecanismo de avance) se desplazan con precisión en estricta conformidad con los requisitos de la instrucción, y el procesamiento de la pieza de trabajo se completa automáticamente.
5. Comentarios en tiempo real: En el proceso de desplazamiento de cada eje, el dispositivo de retroalimentación de detección enviará rápidamente el valor medido del desplazamiento al dispositivo de control numérico, para compararlo con el valor de comando, y luego emitirá instrucciones de compensación al servosistema a un ritmo muy rápido. velocidad hasta que el valor medido sea consistente con el valor de comando.
6. Protección fuera de rango: en el proceso de desplazamiento de cada eje, si ocurre el fenómeno de "sobrerango", el dispositivo limitador puede enviar algunas señales al controlador programable o directamente al dispositivo de control numérico, el sistema de control numérico por un lado envía una alarma señal a través de la pantalla, por otro lado, envía un comando de parada al servosistema de alimentación para implementar protección de exceso de rango.
La tecnología de perforación CNC tiene las siguientes características de procesamiento:
1. Alto grado de automatización: Todo el proceso de procesamiento está controlado por un programa preparado previamente, lo que reduce la intervención manual y mejora la eficiencia de la producción.
2. Alta precisión: Puede realizar perforaciones de alta precisión, posicionamiento preciso y se garantiza la precisión del tamaño y la forma del orificio.
3. Buena consistencia de procesamiento: Mientras el procedimiento no cambie, la calidad del producto será estable y la repetibilidad será alta.
4, capacidad de procesamiento de formas complejas: Puede procesar una variedad de formas y estructuras complejas de la pieza de trabajo para satisfacer diversas necesidades.
5. Amplia gama de adaptación: Adecuado para perforar una variedad de materiales, incluidos metal, plástico, materiales compuestos, etc.
6. Alta eficiencia de producción: Sistema rápido de cambio automático de herramientas y capacidad de procesamiento continuo, lo que acorta en gran medida el tiempo de procesamiento.
7. Fácil de ajustar y modificar: Los parámetros y el proceso de perforación se pueden ajustar modificando el programa y la flexibilidad es fuerte.
8. Se puede realizar un enlace multieje: La perforación se puede realizar en múltiples direcciones al mismo tiempo, mejorando la complejidad y precisión del procesamiento.
9. Monitoreo inteligente: Puede monitorear varios parámetros en el proceso de procesamiento en tiempo real, como fuerza de corte, temperatura, etc., encontrar problemas a tiempo y ajustarlos.
10. Buena interacción persona-computadora: el operador puede operar y monitorear fácilmente a través de la interfaz de operación.
La precisión del mecanizado de la tecnología de perforación CNC se garantiza principalmente mediante los siguientes aspectos:
1. Precisión de la máquina herramienta: la selección de máquinas herramienta de perforación CNC de alta precisión, incluido el diseño estructural de la máquina herramienta, el proceso de fabricación y la precisión del ensamblaje. Los rieles guía, los tornillos guía y otros componentes de transmisión de alta calidad pueden reducir los errores de movimiento.
2. Sistema de control: El avanzado sistema CNC puede controlar con precisión la trayectoria del movimiento y la velocidad de la máquina herramienta para lograr operaciones de interpolación y posicionamiento de alta precisión, a fin de garantizar la precisión de la posición y profundidad de perforación.
3. Selección e instalación de herramientas.: Seleccione la broca adecuada y garantice la precisión de su instalación. La calidad, la geometría y el desgaste de la herramienta afectan la precisión del mecanizado.
4. Enfriamiento y lubricación: Un buen sistema de refrigeración y lubricación puede reducir la generación de calor de corte, reducir el desgaste de la herramienta, mantener la estabilidad del proceso de procesamiento y ayudar a mejorar la precisión.
5. Precisión de programación: La programación precisa es la base para garantizar la precisión del mecanizado. Configuración razonable de coordenadas de perforación, velocidad de avance, profundidad de corte y otros parámetros para evitar errores de programación.
6. Medición y compensación: A través del equipo de medición para detectar la pieza de trabajo después del procesamiento, los resultados de la medición se devuelven al sistema de control numérico para compensar el error, a fin de mejorar aún más la precisión del procesamiento.
7. Posicionamiento del accesorio: para garantizar el posicionamiento preciso y confiable de la pieza de trabajo en la máquina herramienta, reduzca el impacto del error de sujeción en la precisión del mecanizado.
8. Entorno de procesamiento: La temperatura estable, la humedad y el ambiente de trabajo limpio ayudan a mantener la precisión y estabilidad de la máquina herramienta, para garantizar la precisión del procesamiento.
9. Mantenimiento regular: Mantenimiento regular de la máquina herramienta, incluida la verificación y ajuste de la precisión de la máquina herramienta, el reemplazo de las piezas desgastadas, etc., para garantizar que la máquina herramienta esté siempre en buenas condiciones de funcionamiento.
En la tecnología de perforación CNC, la calidad de la superficie de perforación se puede mejorar mediante los siguientes métodos:
1. Elija la herramienta adecuada: De acuerdo con el material de procesamiento y los requisitos de perforación, elija brocas de alta calidad, afiladas y geométricamente optimizadas. Por ejemplo, el uso de brocas recubiertas puede reducir la fricción y el desgaste y mejorar la calidad de la superficie.
2. Optimizar los parámetros de corte.: establezca la velocidad de corte, el avance y la profundidad de corte de manera razonable. Una mayor velocidad de corte y un avance adecuado generalmente ayudan a obtener un mejor acabado superficial, pero se debe tener cuidado para evitar el desgaste excesivo de la herramienta o la inestabilidad del mecanizado debido a parámetros inadecuados.
3. Refrigeración y lubricación completas.: El uso de un lubricante refrigerante eficaz elimina oportunamente el calor de corte, reduce la temperatura de corte, reduce el desgaste de la herramienta y la formación de tumores de viruta, mejorando así la calidad de la superficie.
4. Controlar la asignación de procesamiento: antes de perforar, organice razonablemente el proceso de preprocesamiento, controle la tolerancia de la parte de perforación y evite un impacto excesivo o desigual en la calidad de la superficie.
5. Mejorar la precisión y estabilidad de la máquina herramienta.: mantenga y calibre la máquina herramienta con regularidad para garantizar la precisión del movimiento y la rigidez de la máquina herramienta, y reducir el impacto de la vibración y el error en la calidad de la superficie.
6. Optimizar la ruta de perforación: adopte métodos razonables de alimentación y retracción para evitar rebabas y rayones en la apertura del orificio.
7. Controlar el entorno de procesamiento.: mantenga el entorno de procesamiento limpio, temperatura y humedad constantes, reduzca la interferencia de factores externos en la precisión del procesamiento y la calidad de la superficie.
8. Usando perforación paso a paso: para orificios con diámetros mayores o requisitos de alta precisión, se puede utilizar el método de perforación paso a paso para reducir gradualmente la apertura y mejorar la calidad de la superficie.
9. Tratamiento de la pared del agujero: Después de perforar, si es necesario, se pueden utilizar pulido, esmerilado y otros métodos de tratamiento posteriores para mejorar aún más la calidad de la superficie del orificio.
La tecnología de perforación CNC se ha utilizado ampliamente en los siguientes campos:
1. Campo aeroespacial: Los componentes utilizados en la fabricación de aviones y naves espaciales, como estructuras de alas, componentes de motores, etc., tienen altos requisitos de precisión y calidad.
2. Industria de fabricación de automóviles: Perforación y procesamiento de bloques de cilindros de motores de automóviles, carcasas de transmisión, piezas de chasis, etc., para garantizar la coordinación precisa de las piezas.
3. Fabricación de equipos electrónicos.: Desempeña un papel importante en la perforación de placas de circuito impreso (PCB) para garantizar la precisión de las conexiones del circuito.
4. fabricación de moldes: Perforación de alta precisión para todo tipo de moldes, como moldes de inyección, matrices de estampado, etc., para cumplir con la estructura compleja y los requisitos de alta precisión del molde.
5. Campo de dispositivos médicos: Piezas de precisión para la producción de dispositivos médicos, como instrumentos quirúrgicos, piezas protésicas, etc.
6. Industria energetica: incluyendo equipos de generación de energía eólica, equipos petroquímicos y otras piezas de perforación.
7. Fabricación marina: Perforación y procesamiento de piezas de motores marinos, piezas estructurales de cascos, etc.
8. industria militar: Fabricación de piezas de armas y equipos para garantizar su rendimiento y confiabilidad.
En resumen, la tecnología de perforación CNC ocupa una posición indispensable en todos los campos de la industria moderna debido a su alta precisión, alta eficiencia y flexibilidad.
La tendencia de desarrollo de la tecnología de perforación CNC se refleja principalmente en los siguientes aspectos:
1. Mayor precisión y velocidad: Con la mejora continua de la calidad del producto y los requisitos de eficiencia de producción de la industria manufacturera, la tecnología de perforación CNC se desarrollará hacia una mayor precisión de posicionamiento, precisión de repetición y velocidad de perforación más rápida.
2. Inteligencia y automatización: la integración de inteligencia artificial, aprendizaje automático y otras tecnologías para lograr programación automática, optimización automática de parámetros de procesamiento, diagnóstico automático de fallas y funciones de compensación automática de errores, reduce aún más la intervención manual, mejora la eficiencia del procesamiento y la estabilidad de la calidad.
3. Varillaje multieje y mecanizado de compuestos.: El desarrollo de la tecnología de perforación con varillaje multieje puede completar la perforación de formas complejas y múltiples ángulos con una sola sujeción. Al mismo tiempo, con otros procesos de procesamiento como fresado, molienda, etc., para lograr una energía de múltiples máquinas, mejorar la eficiencia y precisión del procesamiento.
4. Protección del medio ambiente verde: Centrarse en el ahorro de energía y la reducción del consumo, utilizando sistemas de propulsión más eficientes y tecnologías de ahorro de energía para reducir el consumo de energía. Al mismo tiempo, se optimiza el uso y tratamiento del fluido de corte para reducir el impacto sobre el medio ambiente.
5. Miniaturización y gran escala.: por un lado, satisface las necesidades de alta precisión y estabilidad del taladrado de micropiezas; Por otro lado, puede abordar la perforación a gran escala de grandes piezas estructurales, como barcos y puentes.
6. Red y control remoto: A través de la red para lograr la interconexión entre equipos, monitoreo remoto, diagnóstico y mantenimiento, mejorar la eficiencia y conveniencia de la gestión de producción.
7. Nueva adaptabilidad del material: puede adaptarse a nuevos materiales como superaleaciones, materiales compuestos y otros procesos de perforación, desarrollar las herramientas y procesos correspondientes.
8. Optimización de la interacción persona-computadora.: una interfaz de interacción persona-computadora más amigable y conveniente facilita a los operadores programar, operar y monitorear.
Como método de procesamiento importante en la industria manufacturera moderna, la tecnología de perforación CNC tiene muchas ventajas y amplios campos de aplicación. El principio de mecanizado realiza una perforación de alta precisión mediante programación, procesamiento de señales, ejecución de máquinas herramienta y otros pasos. En términos de características, tiene las ventajas de un alto grado de automatización, alta precisión, buena consistencia y amplio rango de adaptación. Para garantizar la precisión del mecanizado, depende de muchos factores, como la precisión de la máquina herramienta, el sistema de control y la selección de herramientas. La calidad de la superficie de perforación se puede mejorar seleccionando herramientas de corte y optimizando los parámetros de corte. En el futuro, la tendencia de desarrollo de la tecnología de perforación CNC avanzará hacia una mayor precisión y velocidad, inteligencia y automatización, varillaje multieje y procesamiento de compuestos, protección ambiental ecológica, miniaturización y control remoto a gran escala, adaptabilidad de nuevos materiales y Optimización de la interacción persona-computadora. Es previsible que la tecnología de perforación CNC continúe innovando y desarrollándose, brindando un apoyo más poderoso al progreso de la industria manufacturera.
Contacto: Ada Li
Tel:86 17722440307
WhatsApp:86 17722440307
Correo electrónico: Ada@honscn.com
Agregar: 4F, No. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China