يجتمع الابتكار والحرفية والجماليات معًا في أجزاء التصنيع المذهلة المخصصة باستخدام الحاسب الآلي. في Honscn Co.,Ltd، لدينا فريق تصميم متخصص لتحسين تصميم المنتج باستمرار، مما يتيح للمنتج دائمًا تلبية أحدث طلبات السوق. سيتم اعتماد المواد عالية الجودة فقط في الإنتاج وسيتم إجراء العديد من الاختبارات على أداء المنتج بعد الإنتاج. كل هذا يساهم بشكل كبير في زيادة شعبية هذا المنتج.
HONSCN تلقت المنتجات العديد من التعليقات الإيجابية منذ إطلاقها. بفضل أدائها العالي وأسعارها التنافسية ، فإنها تبيع بشكل جيد في السوق وتجذب قاعدة عملاء أكبر في جميع أنحاء العالم. ويقوم معظم عملائنا المستهدفين بإعادة الشراء منا لأنهم حققوا نموًا في المبيعات والمزيد من الفوائد ، وتأثيرًا أكبر في السوق أيضًا.
في Honscn، لا يحتاج العملاء إلى القلق بشأن نقل المنتجات مثل أجزاء التصنيع المخصصة باستخدام الحاسب الآلي. من خلال التعاون مع شركات لوجستية موثوقة ، نضمن وصول البضائع بأمان وفعالية.
لا يمكن صنع آلة بدون ثقوب. لتوصيل الأجزاء معًا، يلزم وجود مجموعة متنوعة من أحجام مختلفة من فتحات المسامير أو فتحات المسامير أو فتحات البرشام؛ من أجل إصلاح أجزاء النقل، هناك حاجة إلى فتحات تركيب مختلفة؛ تحتوي أجزاء الماكينة نفسها أيضًا على العديد من أنواع الثقوب (مثل فتحات الزيت، وثقوب المعالجة، وثقوب تقليل الوزن، وما إلى ذلك). يُطلق على تشغيل فتحات المعالجة بحيث تلبي الثقوب المتطلبات اسم معالجة الفتحات.
يعتبر سطح الثقب الداخلي أحد الأسطح المهمة للأجزاء الميكانيكية. في الأجزاء الميكانيكية، تمثل الأجزاء ذات الثقوب عمومًا ما بين 50% إلى 80% من إجمالي عدد الأجزاء. كما تتنوع أنواع الثقوب، فهناك ثقوب أسطوانية، وثقوب مخروطية، وثقوب ملولبة، وثقوب على شكل. تنقسم الثقوب الأسطوانية الشائعة إلى ثقوب عامة وثقوب عميقة، ومن الصعب معالجة الثقوب العميقة.
1. بادئ ذي بدء، الفرق بين مثقاب U والمثقاب العادي هو أن مثقاب U يستخدم الشفرة الطرفية والشفرة المركزية، في هذه الزاوية، تكون العلاقة بين مثقاب U والمثقاب الصلب العادي مشابهة في الواقع للعلاقة بين أداة تحويل لقط الآلة وأداة تحويل اللحام، ويمكن استبدال الشفرة مباشرة بعد تآكل الأداة دون إعادة الطحن. بعد كل شيء، لا يزال استخدام الشفرات القابلة للفهرسة يوفر المواد أكثر من المثقاب الصلب بأكمله، كما أن اتساق الشفرة يجعل من السهل التحكم في حجم الجزء.
2. صلابة مثقاب U أفضل، يمكنك استخدام معدل تغذية مرتفع، وقطر المعالجة لمثقاب U أكبر بكثير من قطر المثقاب العادي، يمكن أن يصل الحد الأقصى إلى D50 ~ 60 مم، بالطبع، لا يمكن أن يكون مثقاب U صغيرًا جدًا بسبب خصائص النصل.
3.U الحفر تواجه مجموعة متنوعة من المواد تحتاج فقط إلى استبدال نفس النوع من درجات مختلفة من شفرة، الحفر الثابت ليست مريحة للغاية.
4. بالمقارنة مع الحفر الصلب، فإن دقة الثقب المحفور بواسطة الحفر U لا تزال أعلى، والتشطيب أفضل، خاصة عندما لا يكون التبريد والتشحيم سلسًا، يكون الأمر أكثر وضوحًا، ويمكن للحفر U تصحيح دقة موضع الثقب ، ولا يمكن القيام بالحفر الصعب، ويمكن استخدام الحفر U كسكين تجويف.
1. يمكن للمثقاب U أن يثقب الثقوب على الأسطح بزوايا ميل أقل من 30~ دون تقليل معلمات القطع.
2. بعد أن يتم تقليل معلمات القطع للحفر U بنسبة 30%، يمكن تحقيق القطع المتقطع، مثل معالجة الثقوب المتقاطعة، والثقوب المتقاطعة، وتثقيب الطور.
3. يمكن للحفر على شكل U أن يحقق حفر ثقوب متعددة الخطوات، ويمكن أن يقوم بالحفر الممل، والشطب، والحفر اللامركزي.
4. عند الحفر، تكون رقائق الحفر في الغالب عبارة عن رقائق قصيرة، ويمكن استخدام نظام التبريد الداخلي لإزالة الرقائق بشكل آمن، دون تنظيف الرقائق الموجودة على الأداة، مما يفضي إلى استمرارية معالجة المنتج، وتقصير وقت المعالجة و تحسين الكفأة.
5. في حالة نسبة الطول إلى القطر القياسية، لا يلزم إزالة الرقاقة عند الحفر باستخدام مثقاب U.
6. مثقاب U للأداة القابلة للفهرسة، وتآكل الشفرة دون شحذها، واستبدالها بشكل أكثر ملاءمة، وتكلفة منخفضة.
7. قيمة خشونة السطح للثقب المعالج بواسطة الحفر U صغيرة، ونطاق التسامح صغير، والذي يمكن أن يحل محل عمل بعض الأدوات المملة.
8. لا يحتاج استخدام الحفر U إلى ثقب الثقب المركزي مسبقًا، كما أن السطح السفلي للفتحة العمياء المعالج مستقيم نسبيًا، مما يلغي الحفر المسطح.
9. إن استخدام تقنية الحفر U لا يمكن أن يقلل فقط من أدوات الحفر، ولأن الحفر U هو رأس شفرة الكربيد الأسمنتية، فإن عمر القطع الخاص بها يزيد عن عشرة أضعاف الحفر العادي، وفي الوقت نفسه، هناك أربع حواف قطع على الشفرة، يمكن استبدال تآكل الشفرة في أي وقت قطع، القطع الجديد يوفر الكثير من الطحن واستبدال وقت الأداة، ويمكن أن يحسن متوسط الكفاءة 6-7 مرات.
1. عند استخدام مثقاب U، تكون صلابة أداة الآلة وحيادية الأداة وقطعة العمل عالية، لذا فإن مثقاب U مناسب للاستخدام في أدوات آلة CNC عالية الطاقة وعالية الصلابة وعالية السرعة.
2. عند استخدام الحفر على شكل U، يجب استخدام الشفرة المركزية بمتانة جيدة، ويجب استخدام الشفرة الطرفية مع شفرات حادة نسبيًا.
3. عند معالجة مواد مختلفة، يجب اختيار شفرة أخدود مختلفة، في ظل الظروف العادية، تغذية صغيرة، تسامح صغير، نسبة طول الحفر إلى القطر، اختر شفرة الأخدود بقوة قطع أصغر، على العكس من ذلك، المعالجة الخشنة، التسامح الكبير، طول الحفر U نسبة القطر إلى صغيرة، ثم اختر شفرة الأخدود بقوة قطع أكبر.
4. عند استخدام الحفر U، يجب أن نأخذ في الاعتبار قوة عمود دوران أداة الآلة، واستقرار تثبيت الحفر U، وضغط وتدفق سائل القطع، والتحكم في تأثير إزالة الرقاقة للحفر U، وإلا فإنه سيؤثر بشكل كبير على خشونة السطح و دقة الأبعاد للثقب.
5. عند تركيب مثقاب U، من الضروري جعل مركز الحفر U يتزامن مع مركز قطعة الشغل ويكون عموديًا على سطح قطعة العمل.
6. عند استخدام الحفر U، يجب تحديد معلمات القطع المناسبة وفقًا لمواد الأجزاء المختلفة.
7. عند قطع اختبار الحفر، تأكد من عدم تقليل التغذية أو السرعة حسب الرغبة بسبب الحذر والخوف، حتى تتلف شفرة الحفر U أو يتلف المثقاب U.
8. عند استخدام معالجة U-drill، عندما يتم تآكل الشفرة أو تلفها، من الضروري تحليل الأسباب بعناية واستبدال الشفرة بصلابة أفضل أو أكثر مقاومة للتآكل.
9. عند استخدام المثقاب U لمعالجة الثقوب المتدرجة، من الضروري البدء بالمعالجة من الثقوب الكبيرة ومن ثم معالجة الثقوب الصغيرة.
10. عند الحفر، انتبه إلى سائل القطع للحصول على ضغط كافٍ لطرد الرقائق.
11. تختلف الشفرة المستخدمة في منتصف وحافة المثقاب على شكل حرف U، ويجب عدم إساءة استخدامها، وإلا فإنها ستتلف قضيب الحفر على شكل حرف U.
12. عند الحفر باستخدام مثقاب U، يمكن استخدام دوران قطعة العمل، وتدوير الأداة، والدوران المتزامن للأداة وقطعة العمل، ولكن عندما يتم نقل الأداة في وضع التغذية الخطية، فإن الطريقة الأكثر شيوعًا هي استخدام وضع دوران قطعة العمل.
13. يجب أن يؤخذ أداء المخرطة في الاعتبار عند التشغيل الآلي على سيارة CNC، ويجب تعديل معلمات القطع بشكل مناسب، مما يقلل بشكل عام من السرعة والتغذية المنخفضة.
1. تتلف الشفرة بسرعة كبيرة، ويسهل كسرها، وتزيد تكلفة المعالجة.
2. تنبعث صافرة قاسية أثناء المعالجة، وتكون حالة القطع غير طبيعية.
3. ارتعاش الآلة، مما يؤثر على دقة تصنيع الأدوات الآلية.
1. يجب أن ينتبه تركيب مثقاب U إلى الاتجاهات الإيجابية والسلبية، أي شفرة متجهة للأعلى، وأي شفرة متجهة للأسفل، وأي شفرة متجهة للداخل وأي شفرة متجهة للخارج.
2. يجب تصحيح الارتفاع المركزي لحفر U، وفقًا لحجم القطر ليتطلب نطاق التحكم، ويتم التحكم فيه بشكل عام في حدود 0.1 مم، وكلما كان قطر الحفر U أصغر، زادت متطلبات ارتفاع المركز، وارتفاع المركز ليس جيدًا لحفر U سوف يتآكل الجانبان، وستكون الفتحة أكبر، وسيتم تقصير عمر خدمة الشفرة، ومن السهل كسر الحفر الصغير على شكل حرف U.
3. يتطلب U Drill متطلبات عالية جدًا من سائل التبريد، ويجب التأكد من أن سائل التبريد ينبعث من مركز U Drill، وكلما زاد ضغط سائل التبريد، كان ذلك أفضل، ويمكن سد مخرج الماء الزائد للبرج لضمان نفاذه. ضغط.
4، معلمات قطع الحفر U بما يتفق بدقة مع تعليمات الشركة المصنعة، ولكن أيضًا للنظر في العلامات التجارية المختلفة للشفرات، وقوة الماكينة، والمعالجة يمكن أن تشير إلى قيمة الحمولة لحجم أداة الماكينة، وإجراء التعديلات المناسبة، بشكل عام باستخدام السرعة العالية، والتغذية المنخفضة .
5.U شفرة الحفر للتحقق في كثير من الأحيان، واستبدال في الوقت المناسب، لا يمكن تثبيت شفرات مختلفة في الاتجاه المعاكس.
6. وفقًا لصلابة قطعة العمل وطول تعليق الأداة لضبط كمية التغذية، كلما كانت قطعة العمل أصعب، كلما زاد تعليق الأداة، قلت كمية القطع.
7. لا تستخدم التآكل المفرط للشفرة، ويجب تسجيلها في إنتاج تآكل الشفرة ويمكن تشكيل العلاقة بين عدد قطع العمل، واستبدال الشفرات الجديدة في الوقت المناسب.
8. استخدم كمية كافية من سائل التبريد الداخلي مع الضغط الصحيح. وتتمثل المهمة الرئيسية للمبرد في إزالة الرقائق والتبريد.
9. لا يمكن استخدام مثقاب U لمعالجة المواد اللينة، مثل النحاس والألومنيوم الناعم، وما إلى ذلك.
تتمتع Honscn بأكثر من عشر سنوات من الخبرة في التصنيع باستخدام الحاسب الآلي، وهي متخصصة في التصنيع باستخدام الحاسب الآلي، ومعالجة الأجزاء الميكانيكية للأجهزة، ومعالجة أجزاء معدات التشغيل الآلي. معالجة أجزاء الروبوت، معالجة أجزاء الطائرات بدون طيار، معالجة أجزاء الدراجات، معالجة الأجزاء الطبية، إلخ. إنها واحدة من الموردين ذوي الجودة العالية للتصنيع باستخدام الحاسب الآلي. في الوقت الحاضر، تمتلك الشركة أكثر من 50 مجموعة من مراكز التصنيع باستخدام الحاسب الآلي، وآلات الطحن، وآلات الطحن، ومعدات الاختبار عالية الجودة عالية الدقة، لتزويد العملاء بخدمات معالجة قطع الغيار باستخدام الحاسب الآلي بدقة وعالية الجودة.
1 تغيير أداة مجلة نوع القبعةيتم اعتماد وضع تغيير أداة العنوان الثابت في الغالب، ويتم تثبيت رقم الأداة المطابق لرقم مقعد الأداة. يتم تحقيق إجراء تغيير الأداة من خلال الحركة الجانبية لمخزن الأداة وحركة المغزل لأعلى ولأسفل، والتي يشار إليها باسم وضع تغيير أداة المغزل للاختصار. نظرًا لأنه لا يحتوي على أداة تغيير الأداة، فلا يمكن تحديد إجراء تحديد الأداة مسبقًا قبل إجراء تغيير الأداة. تتم كتابة تعليمات تغيير الأداة وتعليمات اختيار الأداة بشكل عام في نفس مقطع البرنامج، ويكون تنسيق التعليمات كما يلي:M06 T
عند تنفيذ الأمر، تقوم مجلة الأداة أولاً بإدارة حامل الأداة المطابق لرقم الأداة الموجود على عمود الدوران إلى موضع تغيير الأداة، ثم تقوم بتبديل الأداة الموجودة على عمود الدوران مرة أخرى إلى حامل الأداة، ثم تقوم مجلة الأداة بتدوير الأداة المحددة في الأمر الخاص بتغيير موضع الأداة وتغيير المغزل. بالنسبة لمجلة الأداة هذه، حتى إذا تم تنفيذ TX x قبل M06، فلا يمكن تحديد الأداة مسبقًا، * لا يزال إجراء التحديد النهائي للأداة يتم تنفيذه عند تنفيذ M06. إذا لم يكن هناك TX X أمام M06، فسيقوم النظام بإصدار إنذار.2 تغيير أداة القرص ومخزن السلسلة
يستخدم معظمهم وضع تغيير أداة العنوان العشوائي. العلاقة المقابلة بين رقم الأداة ورقم مقعد الأداة هي علاقة عشوائية، ولكن يمكن تذكر العلاقة المقابلة لها بواسطة نظام NC. يعتمد تغيير أداة مجلة الأدوات هذه على المعالج. إجراء تغيير الأمر والأداة هو: يتحكم أمر الأداة TX في دوران مجلة الأداة ويحول الأداة المحددة إلى موضع عمل تغيير الأداة، بينما يتحكم أمر تغيير الأداة M06 في عمل معالج تغيير الأداة لتحقيق تبادل الأدوات بين أداة المغزل وموضع تغيير الأداة لمخزن الأداة. يمكن أن يكون أمر اختيار الأداة وأمر تغيير الأداة في نفس مقطع البرنامج أو كتابتهما بشكل منفصل. يمكن أيضًا تشغيل الإجراءات المقابلة لاختيار الأداة وأمر تغيير الأداة في وقت واحد أو بشكل منفصل. تنسيق التعليمات على النحو التالي:
Tx x M06؛ عند تنفيذ الأمر، تقوم مجلة الأداة أولاً بتحويل أداة TX إلى موضع تغيير الأداة، ثم يقوم المناور بتبادل أداة مجلة الأداة بأداة المغزل لتحقيق الغرض من تغيير أداة TX إلى المغزل. بعد قراءة الطريقتين أعلاه، يمكن ملاحظة أن الطريقة 2 تتداخل مع إجراء اختيار الأداة مع إجراء المعالجة، بحيث عند تغيير الأداة، ليس من الضروري تحديد الأداة وتغيير الأداة مباشرة، الأمر الذي يحسن كفاءة العمل.
كما ذكرنا سابقًا، يرتبط أمر تغيير الأداة الخاص بمخزن الأداة بالشركة المصنعة للأداة الآلية. على سبيل المثال، تتطلب بعض مجلات الأدوات ألا يعود المحور Z إلى نقطة تغيير الأداة فحسب، بل يجب أن يعود المحور Y أيضًا إلى نقطة تغيير الأداة. تنسيق البرنامج على النحو التالي:
عند كتابة تعليمات اختيار الأداة وتغييرها في نفس قسم البرنامج، قد تختلف أيضًا قواعد تنفيذ الأدوات من شركات مصنعة مختلفة. إن وجدت، بغض النظر عن ترتيب الكتابة، يجب اتباع قواعد اختيار الأداة وتغيير الأداة. تنص بعض القواعد على أنه يجب كتابة أمر اختيار الأداة قبل تنفيذ أمر تغيير الأداة. وإلا فإن الإجراء هو تغيير الأداة أولاً ثم تحديد الأداة، كما هو موضح في البرنامج أعلاه. في هذه الحالة، إذا لم تتم كتابة أمر اختيار الأداة قبل تنفيذ الأمر M06، فسيقوم النظام بإصدار إنذار.
"إن التصنيع باستخدام الحاسب الآلي غالبًا ما يكون له العديد من المزايا. ومن منظور تطبيقات السيارات والفضاء والتطبيقات الاستهلاكية، فإنه يستخدم على نطاق واسع في تصنيع المكونات في هذه المجالات. وبطريقة ما، فهو يمتلك خصائص مشابهة للمعادن."
البولي فورمالدهيد، أو POM، عبارة عن راتينج بلاستيكي رائع يستخدم على نطاق واسع في مختلف المجالات الصناعية. تعتبر صناعات الطيران والسيارات والإلكترونيات من المستهلكين المهمين لهذا البوليمر. معالجة البولي فورمالدهيد، خاصة عند استخدامه في مجال التصنيع، يمكن أن تحقق معالجة سريعة وفعالة. بالإضافة إلى ذلك، فهي تفيد المستخدمين نظرًا لقوتها الميكانيكية العالية، والصلابة، وقابلية التشغيل الآلي، وتنوع خيارات الدرجات.
تحتوي هذه المقالة على التفاصيل الرئيسية التالية لتصنيع POM CNC، بالإضافة إلى خصائصها الأساسية من حيث الوظائف والتطبيقات والمزايا وما إلى ذلك. هيا بنا نبدأ.
POM، وهو بوليمر متجانس، يُعرف أيضًا باسم Delrin. يتم اعتماده على نطاق واسع باعتباره لدن بالحرارة من الدرجة الهندسية لتصنيع النماذج الأولية للاستخدام الصناعي. وعادة ما يأتي في شكلين: البوليمرات المشتركة أو البوليمرات المتجانسة. من النماذج الأولية المعقدة إلى أجزاء الآلات المرنة، فإنها تجلب فوائد اقتصادية للتصنيع.
يمكن لمصممي المنتجات الاستفادة من سلامتها الهيكلية وتنوع الألوان وخصائص الصلابة. بالإضافة إلى ذلك، فإن موثوقيتها ومرونتها في البيئات الرطبة تجعلها مناسبة للتطبيقات البحرية والطبية والفضائية. POM، عادةً ما يكون له اسم آخر، مثل؛ أسيتال (أسيتال)، بولي أسيتال (بولي أسيتال)، بولي فورمالدهيد، إلخ.
يتمتع الفورمالديهايد POM أو البولي أسيتال بمزايا كبيرة عند استخدامه في التصنيع. الاستفادة من التقنيات الرائدة مثل التصنيع الدقيق POM أو التصنيع باستخدام الحاسب الآلي؛ على سبيل المثال؛ الطحن والحفر واللكم واللكم. بالإضافة إلى ذلك، فإن تنوعها في مختلف الدرجات مفيد جدًا لخبراء الآلات. ديلرين متوافق أيضًا مع تقنيات القطع المتقدمة؛ وتشمل الأمثلة عمليات القطع والبثق بالليزر.
تشمل بعض الميزات الرئيسية للتصنيع باستخدام الحاسب الآلي:
يمكن نشر تصنيع الآلات البلاستيكية باستخدام الحاسب الآلي من خلال تقنيات مختلفة؛ على سبيل المثال؛ الطحن باستخدام الحاسب الآلي، والحفر باستخدام الحاسب الآلي، والمخارط، والطحن، والتقطيع واللكم. تؤثر سهولة معالجتها بشكل كبير على استخدامها في هذه العمليات. بالإضافة إلى ذلك، فقد حظي أيضًا بالكثير من الاهتمام لاستطالته العالية. الآن، دعونا نناقش طريقة الحصول على أفضل النتائج في تصنيع POM CNC.
تبدأ العملية بالتصميم والبرمجة بمساعدة الكمبيوتر لتحسين مستويات الدقة والجودة والتحسين. بعد التكوين الافتراضي، يتم إرسال التعليمات إلى آلة CNC بالشكل التالي: رمز G لمزيد من المعالجة الآفاق
يتم بعد ذلك إجراء عملية القطع على مادة الشغل (POM) للحصول على الأبعاد والأبعاد المثالية. يوصى باستخدام سائل التبريد عند معالجة Delrin بسرعة عالية لمنع عمليات المعالجة غير الفعالة مثل تراكم الرقائق أو ارتفاع درجة الحرارة.
فيما يلي بعض التقنيات المستخدمة بشكل شائع للمعالجة قوي البولي فورمالدهيد أو POM.
1. بوم التصنيع باستخدام الحاسب الآلي الطحن
غالبًا ما يتم استخدام الطحن باستخدام الحاسب الآلي لتصنيع أجزاء POM. تساعد الأدوات ذات الحواف الحادة في الحصول على أفضل زاوية بالإضافة إلى تشطيب السطح. لذلك، من المعقول استخدام قاطعة طحن ذات فتحة واحدة لمعالجة Delrin. تمنع هذه القواطع تراكم الرقائق أثناء عمليات التشغيل الآلي.
2.POM الحفر باستخدام الحاسب الآلي
تعتبر المثاقب القياسية والمركزية هي الأنسب لمعالجة راتنجات البوليفورمالدهيد. تتميز هذه المواد بحواف قوية وحادة تسمح في النهاية بعمليات طحن سلسة على Delrin. يجب أن تكون سرعة القطع المثالية لـ POM المحفورة حوالي 1500 دورة في الدقيقة وزاوية التواء الشفة 118°.
3.POM تحول باستخدام الحاسب الآلي
عملية الخراطة POM CNC تشبه عملية الخراطة النحاسية. يمكن تحقيق أفضل النتائج من خلال الحفاظ على سرعة الدوران العالية بنفس معدل معدل التغذية المتوسط. من أجل منع التداخل ومشاكل تراكم الرقائق المفرطة، يجب استخدام قاطع الرقاقة لعمليات الدوران الدقيقة.
4. التقطيع واللكم
التقطيع والختم، كلتا الطريقتين مفضلتان للأجزاء المعقدة الصغيرة والمتوسطة الحجم. أثناء التشغيل، يمكن أن تؤدي الشقوق الموجودة في الورقة إلى مشاكل كبيرة تتعلق بالمعالجة غير السليمة. للتخلص من هذه المشكلة، من الأفضل تسخين لوحة Delrin مسبقًا واستخدام أداة ثقب يدوية أو عالية.
أبرز الملامح: "أثناء تصنيع POM CNC، من المهم إبقاء POM محكمًا أو الإمساك بـ POM واستخدام أداة من الفولاذ الصلب أو الكربيد.
تعتبر درجتا الأسيتال الأكثر شيوعًا مفيدة جدًا في التصنيع باستخدام الحاسب الآلي؛ راتنجات البوليفورمالدهيد 150، راتنجات البوليفورمالدهيد؛ 100 (أف). دعونا نقيم مدى توافقها؛
1. ديلرين 150
ينتمي Derlin 150 إلى عائلة الأسيتال المتجانسة. لديها قوة ميكانيكية عالية، وصلابة ومقاومة التآكل. بفضل هذه الميزات الفريدة، فهو مثالي لتصنيع التروس والبطانات والحشيات والتشطيبات الداخلية والخارجية للسيارات باستخدام الحاسب الآلي. بالإضافة إلى ذلك، فإن ثباته تحت ظروف درجات الحرارة العالية يجعله مثاليًا لأجزاء الري والناقل.
2. ديلرين 100 (أ)
تم دمج Delrin 100 A مع بولي تترافلوروإيثيلين (PTFE) لتعزيز الثبات الميكانيكي واللزوجة. يستخدم على نطاق واسع في أنظمة التروس أو المكونات التي تتطلب خصائص احتكاك منخفضة. وبالإضافة إلى ذلك، فهو يتمتع بمقاومة قوية للرطوبة والمواد الكيميائية. بالإضافة إلى ذلك، فهو يلغي خاصية التشحيم الذاتي (الزيت أو الشحوم)، مما يجعله مختلفًا عن درجات Delrin الأخرى.
يلعب تشطيب السطح المطلوب دورًا رئيسيًا في عملية التصنيع. عندما يتعلق الأمر بالمعالجة السطحية، عادة ما يتم استخدام خيارين: التصنيع الآلي والسفع الرملي. وهنا مقدمة موجزة لهذه؛
بعد المعالجة
غالبًا ما تترك المعالجة باستخدام الحاسب الآلي سطحًا أو ملمسًا وعرًا على سطح جزء الأسيتال. عندما تكون هناك حاجة إلى أجزاء خشنة أو ذات نسيج لتحسين خصائص الاحتكاك للأجزاء، يفضل معالجة السطح. يتراوح نطاق الخشونة النموذجي الذي يمكن تحقيقه عن طريق التصنيع حوالي 32 إلى 250 ميكرو بوصة (0.8 إلى 6.3 ميكرون).
انفجار اللؤلؤة
في معظم الحالات، تترك أدوات التشغيل علامات على أجزاء الأسيتال. غالبًا ما يتم استخدام السفع الرملي لمنع علامات الأداة وتعزيز التأثير البصري للأجزاء المصنعة من Delrin. إنه يعمل عن طريق إطلاق الخرز الزجاجي أو الجزيئات الدقيقة على سطح الأجزاء المُشكَّلة تحت ضغط عالٍ. بالإضافة إلى ذلك، فهو يحسن المتانة ويوفر مظهرًا قيمًا وناعمًا وغير لامع وجميلًا ومصقولًا لأجزاء آلة راتينج البوليفورمالدهيد.
هناك تقنيات أخرى؛ على سبيل المثال؛ أنودة، تلميع، طلاء وختم. ومع ذلك، فإن معظم مهندسي التصميم يفضلون الخيارين المذكورين أعلاه بسبب الجدوى الاقتصادية.
ومع ذلك، هناك فوائد كبيرة لاستخدام Delrin في التصنيع باستخدام الحاسب الآلي. الى جانب ذلك، لديها أيضا بعض العيوب. فيما يلي حدود Delrin؛
التصاق : على الرغم من أن الأسيتال يتمتع بمقاومة كيميائية ممتازة، إلا أنه غالبًا ما يمثل تحديات في الارتباط بالمواد اللاصقة القوية. للتغلب على هذه المشكلة، قد يحتاج المصممون إلى استخدام خيارات الأسطح المعالجة بعد ذلك للحصول على أفضل النتائج.
الحساسية الحرارية : تعتبر الحساسية الحرارية مشكلة جديرة بالملاحظة بالنسبة لمصنعي التصميم. إن قدرة كحولات الأسيتون على تحمل ظروف درجات الحرارة المرتفعة مهمة جدًا. ومع ذلك، فهو مناسب تمامًا للتطبيقات التي يكون فيها الاستقرار الميكانيكي أمرًا بالغ الأهمية. ولكن في بعض الحالات، عندما تتعرض لظروف درجة حرارة عالية، سيكون هناك تشوه أو مشاكل في التشوه. بالمقارنة مع النايلون، يظهر النايلون قوة أعلى وقوة هيكلية حتى في البيئات القاسية.
قابلية عالية للاشتعال : تواجه معالجة راتنجات البوليفورمالدهيد تحدي القابلية للاشتعال. وهو حساس لدرجات الحرارة التي تزيد عن 121 درجة مئوية. يوصى دائمًا باستخدام سائل التبريد، مثل مبرد الهواء، للحفاظ على درجة الحرارة أثناء عملية المعالجة. من أجل التغلب على مشاكل القابلية للاشتعال أو السيطرة عليها، من الضروري أيضًا استخدام طفاية حريق من الفئة A عند معالجة POM.
من التصميمات الداخلية للسيارات إلى مكونات الطيران، يتم استخدام Drin في مجموعة واسعة من التطبيقات. دعونا نلقي نظرة على بعض تطبيقاته الرئيسية في التصنيع؛
الصناعة الطبية
POM هي مادة مهمة للمكونات أو المعدات الطبية. باعتباره لدنًا حراريًا مصممًا، فإنه يلبي معايير الجودة الصارمة لإدارة الغذاء والدواء الأمريكية (FDA) أو ISO. وتتراوح تطبيقاتها من العبوات والمساكن إلى المكونات الوظيفية المعقدة؛ على سبيل المثال؛ المحاقن ذات الاستخدام الواحد والأدوات الجراحية والصمامات وأجهزة الاستنشاق والأطراف الصناعية والمزروعات الطبية.
صناعة السيارات
توفر Derlin مجموعة واسعة من مكونات السيارات لصناعة السيارات. إن قوتها الميكانيكية العالية، والاحتكاك المنخفض، ومقاومة التآكل تسمح للمهندسين باستخدامها لتصنيع أجزاء مهمة للسيارات والدراجات النارية والمركبات الكهربائية. تتضمن بعض الأمثلة الشائعة ما يلي: العلب المفصلية، وأنظمة القفل، ووحدات إرسال الوقود.
الأجهزة الاستهلاكية
عندما يتعلق الأمر بالتطبيقات المريحة، فإن معالجة البولي فورمالدهيد تصف العديد من الفوائد المهمة. ويستخدمه خبراء التصنيع في صناعة السحابات وأدوات الطبخ والغسالات والمشابك.
قطع غيار الآلات الصناعية
إن القوة الكبيرة التي يتمتع بها Derlin تمكنه من استخدامه في تصنيع الأجزاء الصناعية. إن قدرتها على تحمل التآكل وخصائص الاحتكاك المنخفضة تجعلها مثالية للمكونات مثل النوابض وعجلات المروحة والتروس والمبيتات والكاشطات والبكرات.
وباعتبارنا شركة رائدة في الصناعة، فإن Honscn دائمًا ما تكون في طليعة تطورات السوق. نحن نعلم أنه في ظل المنافسة الشرسة في السوق، فقط من خلال شحذ أنفسنا باستمرار يمكننا خلق قدرة تنافسية غير قابلة للتدمير. لذلك، نحن نلتزم بالابتكار التكنولوجي وندمج الإدارة العلمية في كل رابط إنتاج لضمان دقة كل خطوة. نحن لا نركز فقط على نبض السوق المحلية، ولكن أيضًا بما يتماشى مع المعايير الدولية، مع منظور عالمي لدراسة اتجاه الصناعة، وفهم نبض التايمز. بعقل متفتح، احتضن العالم، بجودة ممتازة، اربح المستقبل!
الحفر بالتحكم العددي هو طريقة للحفر باستخدام تكنولوجيا التحكم الرقمي. تتميز بخصائص الدقة العالية والكفاءة العالية والتكرار العالي. من خلال البرمجة المسبقة لضبط موضع الحفر والعمق والسرعة والمعلمات الأخرى، يمكن لأدوات آلة CNC إكمال عمليات الحفر المعقدة تلقائيًا.
تتكون آلة الحفر CNC عادةً من نظام التحكم ونظام القيادة وجسم الآلة والجهاز المساعد. نظام التحكم هو الأساسي، المسؤول عن معالجة وإرسال التعليمات؛ يحقق نظام القيادة حركة كل محور من أدوات الآلة؛ يوفر جسم الآلة منصة الحفر والدعم الهيكلي. الأجهزة المساعدة تشمل نظام التبريد، نظام إزالة الرقائق، وما إلى ذلك، لضمان العملية السلسة. في الصناعة التحويلية، يتم استخدام الحفر باستخدام الحاسب الآلي على نطاق واسع في مجال الطيران والسيارات وتصنيع القوالب وغيرها من المجالات، والتي يمكن أن تلبي الطلب على الحفر عالي الدقة للأجزاء وتحسين كفاءة الإنتاج وجودة المنتج.
يتضمن مبدأ المعالجة لتقنية الحفر CNC بشكل أساسي الخطوات التالية:
1. برمجة: يتم تحويل نمط الحفر والمعلمات المصممة إلى برنامج معالجة يمكن تحديده لأداة آلة CNC، من خلال لوحة المفاتيح الموجودة على لوحة التشغيل أو آلة الإدخال لإرسال المعلومات الرقمية إلى جهاز CNC.
2. معالجة الإشارات: يقوم جهاز CNC بإجراء سلسلة من المعالجة على إشارة الإدخال، ويرسل نظام التغذية المؤازر وأوامر التنفيذ الأخرى، ويرسل إشارات الأوامر S وM وT وغيرها إلى وحدة التحكم القابلة للبرمجة.
3. تنفيذ أداة الآلة: بعد أن تستقبل وحدة التحكم القابلة للبرمجة إشارات الأوامر S وM وT وغيرها، فإنها تتحكم في جسم أداة الآلة لتنفيذ هذه الأوامر على الفور، وتقوم بإرسال ردود فعل على تنفيذ جسم أداة الآلة إلى جهاز CNC في الوقت الفعلي.
4. السيطرة على النزوح: بعد أن يتلقى النظام المؤازر أمر تنفيذ التغذية، يتم إزاحة محاور الإحداثيات للهيكل الرئيسي لأداة آلة القيادة (آلية التغذية) بدقة وفقًا لمتطلبات التعليمات، وتكتمل معالجة قطعة العمل تلقائيًا.
5. ردود الفعل في الوقت الحقيقي: في عملية إزاحة كل محور، سيقوم جهاز التغذية المرتدة للكشف بسرعة بإرجاع القيمة المقاسة للإزاحة إلى جهاز التحكم الرقمي، وذلك للمقارنة مع قيمة الأمر، ثم إصدار تعليمات التعويض إلى نظام المؤازرة بسرعة كبيرة السرعة حتى تتوافق القيمة المقاسة مع قيمة الأمر.
6. حماية فوق المدى: في عملية إزاحة كل محور، في حالة حدوث ظاهرة "تجاوز المدى"، يمكن لجهاز التحديد إرسال بعض الإشارات إلى وحدة التحكم القابلة للبرمجة أو مباشرة إلى جهاز التحكم الرقمي، يقوم نظام التحكم الرقمي من ناحية بإرسال إنذار إشارة من خلال الشاشة، ومن ناحية أخرى، فإنها ترسل أمر إيقاف إلى نظام مؤازرة التغذية لتنفيذ الحماية من النطاق الزائد.
تتميز تقنية الحفر CNC بخصائص المعالجة التالية:
1. درجة عالية من الأتمتة: يتم التحكم في عملية المعالجة بأكملها من خلال برنامج مُعد مسبقًا، مما يقلل من التدخل اليدوي ويحسن كفاءة الإنتاج.
2. دقة عالية: يمكنها تحقيق الحفر عالي الدقة، وتحديد المواقع بدقة، وضمان دقة حجم وشكل الثقب.
3. اتساق المعالجة الجيد: وطالما أن الإجراء لم يتغير، فإن جودة المنتج تكون مستقرة وقابلية التكرار عالية.
4، القدرة على معالجة الشكل المعقد: يمكن معالجة مجموعة متنوعة من الأشكال والهياكل المعقدة لقطعة العمل لتلبية الاحتياجات المتنوعة.
5. مجموعة واسعة من التكيف: مناسبة لحفر مجموعة متنوعة من المواد، بما في ذلك المعدن والبلاستيك والمواد المركبة وما إلى ذلك.
6. كفاءة إنتاج عالية: نظام تغيير الأدوات التلقائي السريع وقدرة المعالجة المستمرة، مما يقلل وقت المعالجة بشكل كبير.
7. من السهل ضبط وتعديل: يمكن تعديل المعلمات وعملية الحفر عن طريق تعديل البرنامج، وتكون المرونة قوية.
8. يمكن تحقيق الربط متعدد المحاور: يمكن إجراء الحفر في اتجاهات متعددة في نفس الوقت، مما يؤدي إلى تحسين تعقيد ودقة المعالجة.
9. مراقبة ذكية: يمكنه مراقبة المعلمات المختلفة في عملية المعالجة في الوقت الفعلي، مثل قوة القطع ودرجة الحرارة وما إلى ذلك، والعثور على المشكلات في الوقت المناسب وتعديلها.
10. التفاعل الجيد بين الإنسان والحاسوب: يمكن للمشغل التشغيل والمراقبة بسهولة من خلال واجهة التشغيل.
يتم ضمان دقة المعالجة لتقنية الحفر CNC بشكل أساسي من خلال الجوانب التالية:
1. دقة أداة الآلة: اختيار أدوات آلة الحفر CNC عالية الدقة، بما في ذلك التصميم الهيكلي لأداة الآلة وعملية التصنيع ودقة التجميع. يمكن لقضبان التوجيه عالية الجودة ومسامير الرصاص ومكونات النقل الأخرى تقليل أخطاء الحركة.
2. نظام التحكم: يمكن لنظام CNC المتقدم التحكم بدقة في مسار الحركة وسرعة أداة الآلة لتحقيق تحديد المواقع بدقة عالية وعمليات الاستيفاء، وذلك لضمان دقة موضع الحفر وعمقه.
3. اختيار الأداة وتثبيتها: حدد لقمة الحفر المناسبة وتأكد من دقة تركيبها. تؤثر جودة الأداة وهندستها وتآكلها على دقة المعالجة.
4. التبريد والتشحيم: يمكن لنظام التبريد والتشحيم الجيد أن يقلل من توليد حرارة القطع، ويقلل من تآكل الأدوات، ويحافظ على استقرار عملية المعالجة، ويساعد على تحسين الدقة.
5. دقة البرمجة: البرمجة الدقيقة هي الأساس لضمان دقة التصنيع. الإعداد المعقول لإحداثيات الحفر وسرعة التغذية وعمق القطع والمعلمات الأخرى لتجنب أخطاء البرمجة.
6. القياس والتعويض: من خلال معدات القياس للكشف عن قطعة العمل بعد المعالجة، يتم تغذية نتائج القياس مرة أخرى إلى نظام التحكم الرقمي لتعويض الأخطاء، وذلك لزيادة تحسين دقة المعالجة.
7. تحديد المواقع لاعبا اساسيا: لضمان تحديد موضع دقيق وموثوق لقطعة العمل على أداة الآلة، تقليل تأثير خطأ التثبيت على دقة المعالجة.
8. بيئة المعالجة: تساعد درجة الحرارة والرطوبة المستقرة وبيئة العمل النظيفة في الحفاظ على دقة واستقرار أداة الآلة، وذلك لضمان دقة المعالجة.
9. صيانة ممتازة: الصيانة الدورية لأداة الماكينة، بما في ذلك فحص وضبط دقة أداة الماكينة، واستبدال الأجزاء البالية، وما إلى ذلك، للتأكد من أن أداة الماكينة في حالة عمل جيدة دائمًا.
في تكنولوجيا الحفر CNC، يمكن تحسين جودة سطح الحفر بالطرق التالية:
1. اختر الأداة المناسبة: وفقًا لمواد المعالجة ومتطلبات الحفر، اختر لقم الثقب عالية الجودة والحادة والمحسنة هندسيًا. على سبيل المثال، يمكن أن يؤدي استخدام لقم الثقب المطلية إلى تقليل الاحتكاك والتآكل وتحسين جودة السطح.
2. تحسين معلمات القطع: ضبط سرعة القطع ومعدل التغذية وعمق القطع بشكل معقول. عادة ما تساعد سرعة القطع العالية والتغذية المناسبة في الحصول على تشطيب أفضل للسطح، ولكن يجب توخي الحذر لتجنب التآكل المفرط للأداة أو عدم استقرار المعالجة بسبب المعلمات غير المناسبة.
3. التبريد والتشحيم الكامل: استخدام مواد تشحيم التبريد الفعالة، يزيل حرارة القطع في الوقت المناسب، ويقلل من درجة حرارة القطع، ويقلل من تآكل الأدوات وتشكيل أورام الرقائق، وبالتالي تحسين جودة السطح.
4. السيطرة على بدل المعالجة: قبل الحفر، قم بترتيب عملية المعالجة المسبقة بشكل معقول، والتحكم في السماح بجزء الحفر، وتجنب التأثير المفرط أو غير المتساوي على جودة السطح.
5. تحسين دقة واستقرار أداة الآلة: صيانة ومعايرة أداة الآلة بانتظام لضمان دقة حركة وصلابة أداة الآلة، وتقليل تأثير الاهتزاز والخطأ على جودة السطح.
6. تحسين مسار الحفر: اعتماد طرق تغذية وتراجع معقولة لتجنب النتوءات والخدوش عند فتحة الثقب.
7. السيطرة على بيئة المعالجة: الحفاظ على بيئة المعالجة نظيفة، ودرجة حرارة ورطوبة ثابتة، وتقليل تدخل العوامل الخارجية على دقة المعالجة وجودة السطح.
8. باستخدام الحفر خطوة بخطوة: بالنسبة للثقوب ذات الأقطار الأكبر أو التي تتطلب دقة عالية، يمكن استخدام طريقة الحفر خطوة بخطوة لتقليل الفتحة تدريجيًا وتحسين جودة السطح.
9. معالجة جدار الحفرة: بعد الحفر، إذا لزم الأمر، يمكن استخدام التلميع والطحن وطرق المعالجة اللاحقة الأخرى لزيادة تحسين جودة سطح الحفرة.
لقد تم استخدام تكنولوجيا الحفر CNC على نطاق واسع في المجالات التالية:
1. مجال الطيران: المكونات المستخدمة في صناعة الطائرات والمركبات الفضائية، مثل هياكل الأجنحة، ومكونات المحرك، وما إلى ذلك، لها متطلبات عالية من حيث الدقة والجودة.
2. صناعة تصنيع السيارات: حفر ومعالجة كتلة أسطوانة محرك السيارة، وهيكل ناقل الحركة، وأجزاء الهيكل، وما إلى ذلك، لضمان التنسيق الدقيق للأجزاء.
3. تصنيع المعدات الالكترونية: إنه يلعب دورًا مهمًا في حفر لوحات الدوائر المطبوعة (PCB) لضمان دقة توصيلات الدوائر.
4. تصنيع القوالب: حفر عالي الدقة لجميع أنواع القوالب مثل قالب الحقن، قالب الختم، وما إلى ذلك، لتلبية الهيكل المعقد والمتطلبات عالية الدقة للقالب.
5. مجال الأجهزة الطبية: الأجزاء الدقيقة لإنتاج الأجهزة الطبية، مثل الأدوات الجراحية والأجزاء الاصطناعية وغيرها.
6. صناعة الطاقة: بما في ذلك معدات توليد طاقة الرياح ومعدات البتروكيماويات وأجزاء الحفر الأخرى.
7. التصنيع البحري: حفر ومعالجة أجزاء المحركات البحرية، والأجزاء الهيكلية للبدن، وما إلى ذلك.
8. الصناعة العسكرية: تصنيع أجزاء من الأسلحة والمعدات لضمان أدائها وموثوقيتها.
باختصار، تتمتع تقنية الحفر CNC بمكانة لا غنى عنها في جميع مجالات الصناعة الحديثة بسبب دقتها العالية وكفاءتها العالية ومرونتها.
ينعكس اتجاه تطوير تكنولوجيا الحفر CNC بشكل رئيسي في الجوانب التالية:
1. دقة وسرعة أعلى: مع التحسين المستمر لجودة المنتج ومتطلبات كفاءة الإنتاج في الصناعة التحويلية، سوف تتطور تكنولوجيا الحفر باستخدام الحاسب الآلي في اتجاه دقة تحديد المواقع الأعلى ودقة التكرار وسرعة الحفر الأسرع.
2. الذكاء والأتمتة: دمج الذكاء الاصطناعي والتعلم الآلي والتقنيات الأخرى لتحقيق البرمجة التلقائية، والتحسين التلقائي لمعلمات المعالجة، والتشخيص التلقائي للأخطاء ووظائف التعويض التلقائي عن الأخطاء، مما يقلل بشكل أكبر من التدخل اليدوي، ويحسن كفاءة المعالجة واستقرار الجودة.
3. الربط متعدد المحاور والتصنيع المركب: إن تطوير تكنولوجيا حفر الوصلات متعددة المحاور يمكن أن يكمل حفر الأشكال المعقدة والزوايا المتعددة في مشبك واحد. في الوقت نفسه، مع عمليات المعالجة الأخرى مثل الطحن والطحن وما إلى ذلك، لتحقيق طاقة متعددة الآلات، وتحسين كفاءة المعالجة ودقتها.
4. حماية البيئة الخضراء: التركيز على توفير الطاقة وخفض الاستهلاك، وذلك باستخدام أنظمة قيادة أكثر كفاءة وتقنيات توفير الطاقة لتقليل استهلاك الطاقة. وفي الوقت نفسه، تم تحسين استخدام ومعالجة سائل القطع لتقليل التأثير على البيئة.
5. التصغير والواسعة النطاق: من ناحية، فإنه يلبي احتياجات الدقة العالية والاستقرار العالي لحفر الأجزاء الدقيقة؛ ومن ناحية أخرى، يمكنها التعامل مع عمليات الحفر واسعة النطاق للأجزاء الهيكلية الكبيرة مثل السفن والجسور.
6. الشبكة والتحكم عن بعد: من خلال الشبكة لتحقيق الربط بين المعدات والمراقبة عن بعد والتشخيص والصيانة، وتحسين كفاءة وراحة إدارة الإنتاج.
7. القدرة على التكيف المواد الجديدة: يمكن أن تتكيف مع المواد الجديدة مثل السبائك الفائقة والمواد المركبة وغيرها من عمليات الحفر، وتطوير الأدوات والعمليات المقابلة.
8. تحسين التفاعل بين الإنسان والحاسوب: إن واجهة التفاعل بين الإنسان والحاسوب الأكثر ودية وملاءمة تجعل من السهل على المشغلين البرمجة والتشغيل والمراقبة.
باعتبارها طريقة معالجة مهمة في الصناعة التحويلية الحديثة، تتمتع تكنولوجيا الحفر CNC بالعديد من المزايا ومجالات التطبيق الواسعة. يحقق مبدأ التصنيع حفرًا عالي الدقة من خلال البرمجة ومعالجة الإشارات وتنفيذ أدوات الآلة وخطوات أخرى. من حيث الخصائص، فهي تتمتع بمزايا الدرجة العالية من الأتمتة، والدقة العالية، والاتساق الجيد، ومجموعة واسعة من التكيف. من أجل ضمان دقة المعالجة، يعتمد ذلك على العديد من العوامل مثل دقة أداة الآلة ونظام التحكم واختيار الأداة. يمكن تحسين جودة سطح الحفر من خلال اختيار أدوات القطع وتحسين معلمات القطع. في المستقبل، سيتحرك اتجاه تطوير تكنولوجيا الحفر باستخدام الحاسب الآلي نحو دقة وسرعة أعلى، والذكاء والأتمتة، والربط متعدد المحاور والمعالجة المركبة، وحماية البيئة الخضراء، والتصغير والنطاق الواسع، والشبكات والتحكم عن بعد، والقدرة على التكيف مع المواد الجديدة و تحسين التفاعل بين الإنسان والحاسوب. ومن المتوقع أن تستمر تكنولوجيا الحفر باستخدام الحاسب الآلي في الابتكار والتطور، مما يوفر دعمًا أقوى لتقدم الصناعة التحويلية.
الاتصال: أدا لي
الهاتف:86 17722440307
WhatsApp:86 17722440307
البريد الإلكتروني: Ada@honscn.com
إضافة: 4ف، رقم. 41 طريق هوانغدانغ، لوووي الصناعية، شارع دالانغ، لونغهوا، شنتشن، 518109، الصين