Honscn konzentriert sich auf professionelle CNC-Bearbeitungsdienstleistungen
seit 2003.
Honscn Co.,Ltd fördert CNC-Drehteile mit wissenschaftlichen und professionellen Produktionsprozessen auf dem Weltmarkt. Es ist auf der führenden Ebene der Industrie mit Standard die 5S-Betriebsumgebung, die die Garantie für die Produkt qualität ist. Es verfügt über wissenschaft liche Struktur und ästhetische Erscheinung. Hoch leistungs materialien werden den Wert dieses Produkts hervorheben. Feinste Techniken gewährleisten die Genauigkeit der Spezifikationen und machen die Anwendung bequemer.
HONSCN Produkte haben auf dem umkämpften Markt großes Lob und Anerkennung erhalten. Basierend auf dem Feedback unserer Kunden rüsten wir die Produkte ständig auf, um den sich ständig ändernden Markt anforderungen gerecht zu werden. Mit hoher Kosten leistung sind unsere Produkte verpflichtet, allen unseren Kunden eine hohe Interessen quote zu bringen. Und es gibt einen Trend, dass die Produkte eine sprunghafte Verkaufssteigerung erzielt haben und einen großen Marktanteil einnehmen.
Unser Versprechen einer pünktlichen Lieferung der Produkte wie CNC-Drehmaschinendrehteile wurde erfüllt. Bisher haben wir zuverlässige Logistik unternehmen erfolgreich ausgewählt und arbeiten seit Jahren mit ihnen zusammen. Es ist auch die Garantie für einen sicheren Transport.
In der heutigen Bearbeitungsindustrie sind herkömmliche Bearbeitungsgeräte nicht in der Lage, die Qualitätsanforderungen zu erfüllen. CNC-Werkzeugmaschinen ersetzen gewöhnliche Werkzeugmaschinen, und automatische Bearbeitungsgeräte wie Präzisions-CNC-Bearbeitung und CNC-Drehmaschinenbearbeitung ersetzen herkömmliche Werkzeugmaschinen. Im Folgenden erfahren Sie mehr über die Vorteile von CNC-Bearbeitungsmaschinen und die Reihenfolge der Präzisionsbearbeitung mechanischer Teile.
Bei der Bearbeitung mechanischer Teile bieten CNC-Bearbeitungsmaschinen die folgenden Vorteile:
1. Das CNC-Bearbeitungszentrum zeichnet sich durch hohe Präzision und hohe Verarbeitungsqualität aus. CNC-Werkzeugmaschinen sind für ihre außergewöhnliche Präzision und Genauigkeit bekannt Sie verwenden computergesteuerte Bewegungen und spezielle Software, um Aufgaben mit minimalen Fehlermargen auszuführen Im Gegensatz zu menschlichen Bedienern reproduzieren CNC-Maschinen stets identische Teile nach exakten Spezifikationen.
2. CNC-Bearbeitungsteile können eine Mehrkoordinatenverbindung sein und komplexe Formteile bearbeiten. CNC-Werkzeugmaschinen bieten im Vergleich zu herkömmlichen manuellen Maschinen eine bemerkenswerte Flexibilität und Vielseitigkeit Mit der Möglichkeit, Werkzeuge schnell zu wechseln und sich an verschiedene Abläufe anzupassen, eignen sie sich ideal für die Herstellung komplexer und komplizierter Komponenten.
3. Durch die Änderung des CNC-Bearbeitungsprozesses muss im Allgemeinen nur das numerische Steuerungsprogramm geändert werden, wodurch Zeit für die Produktionsvorbereitung gespart werden kann. C NC-Werkzeugmaschinen bieten bemerkenswerte zeitsparende Vorteile Herkömmliche manuelle Bearbeitungsmethoden sind zeit- und arbeitsintensiv und erfordern eine umfangreiche Einrichtung und ständige manuelle Anpassungen Im Gegensatz dazu können CNC-Maschinen einfach so programmiert werden, dass sie komplexe Vorgänge präzise ausführen, wodurch sich die Produktionsvorlaufzeiten erheblich verkürzen. Und die CNC-Bearbeitungsmaschine selbst verfügt über eine hohe Präzision, große Steifigkeit, kann einen günstigen Bearbeitungsumfang wählen und ist hochproduktiv (im Allgemeinen 3- bis 5-fach). gewöhnliche Werkzeugmaschinen).
4. Die CNC-Bearbeitung gehört zu den CNC-Bearbeitungsgeräten, ein hoher Automatisierungsgrad kann die Arbeitsintensität reduzieren. Obwohl die Anfangsinvestition in CNC-Werkzeugmaschinen höher sein kann als bei manuellen Maschinen, bieten sie auf lange Sicht erhebliche Kosteneinsparungen Diese Maschinen senken die Arbeitskosten, da sie weniger Bediener für Betrieb und Überwachung benötigen Darüber hinaus minimieren CNC-Maschinen die Materialverschwendung, indem sie Präzisionsschnitte ausführen und menschliche Fehler reduzieren, was zu erheblichen Materialeinsparungen führt.
5. Erhöhte Produktivität und Effizienz. Einer der bedeutendsten Vorteile von CNC-Werkzeugmaschinen ist ihre Fähigkeit, Produktivität und Effizienz zu steigern. Diese Maschinen können rund um die Uhr betrieben werden, wodurch Produktionsausfallzeiten minimiert und der Output maximiert werden Sobald sie programmiert sind, können sie komplexe Aufgaben mit minimaler Aufsicht ausführen, wodurch Arbeitskräfte für andere kritische Produktionsbereiche frei werden.
CNC-Werkzeugmaschinen haben eine neue Ära der Produktionseffizienz, Genauigkeit und Kosteneffizienz eingeläutet Mit Präzision, Produktivität, Flexibilität, Kosteneinsparungen, zeitsparenden Vorteilen und den richtigen Fähigkeiten können Unternehmen das volle Potenzial von CNC-Maschinen ausschöpfen und im wettbewerbsintensiven Fertigungssektor an der Spitze bleiben.
Jede Verarbeitungsmethode hat ihre Verarbeitungsreihenfolge. Unsere Bediener müssen in Übereinstimmung mit ihrer Verarbeitungsreihenfolge verarbeiten, jedoch nicht ungeordnet, so dass es zu bestimmten Auswirkungen auf die verarbeiteten Produkte oder zu Qualitätsproblemen kommen kann. Eine davon ist die Präzisionsbearbeitung. Anschließend wird die Reihenfolge der Bearbeitung von Präzisionsmechanikteilen in welche Arten unterteilt.
Die Anordnung der Feinteilbearbeitung sollte sich an der Struktur und Rohlingssituation der Teile sowie den Erfordernissen der Positionierungsklemmung orientieren, wobei der Schwerpunkt darauf liegt, dass die Steifigkeit des Werkstücks nicht zerstört wird.
Methode zur Sortierung der Werkzeugkonzentration: Es wird entsprechend dem verwendeten Werkzeug in Prozesse unterteilt und alle Teile bearbeitet, die mit demselben Werkzeug fertiggestellt werden können. Mit dem zweiten Messer und dem dritten Messer können die anderen Teile fertiggestellt werden. Dies kann die Anzahl der Werkzeugwechsel reduzieren, die Leerlaufzeit verkürzen und unnötige Positionierungsfehler reduzieren.
Sortiermethode für Verarbeitungsteile: Aufgrund des Verarbeitungsinhalts vieler Teile werden entsprechend ihrer strukturellen Eigenschaften mehrere Teile lokal verarbeitet, z. B. innere Form, Form, Oberfläche oder Ebene. Gewöhnliche erste Bearbeitungsebene, Positionierungsfläche, nach der Bearbeitung von Löchern; Zuerst einfache geometrische Formen verarbeiten, dann komplexe geometrische Formen verarbeiten; Zuerst werden die Teile mit geringerer Präzision bearbeitet, dann werden die Teile mit höheren Präzisionsanforderungen bearbeitet.
Kurz gesagt, die aktuelle Technologie zur Verarbeitung von Präzisionsmaschinenteilen ist sehr fortschrittlich, von hoher Qualität und hoher Produktionseffizienz.
HONSCN Präzision verfügt über 20 Jahre Erfahrung in der CNC-Bearbeitung. Spezialisiert auf CNC-Bearbeitung, Verarbeitung von Hardware-Maschinenteilen und Teileverarbeitung für Automatisierungsgeräte. Bearbeitung von Roboterteilen, Bearbeitung von UAV-Teilen, Bearbeitung von Fahrradteilen, Bearbeitung von medizinischen Teilen usw. Es ist einer der qualitativ hochwertigen Anbieter von CNC-Bearbeitung. Derzeit verfügt das Unternehmen über Hunderte von CNC-Bearbeitungszentren, Schleifmaschinen, Fräsmaschinen und hochwertigen hochpräzisen Prüfgeräten, um seinen Kunden Präzision und hochwertige CNC-Ersatzteilverarbeitungsdienstleistungen zu bieten.
Mittlerweile nutzen viele Industrien für Präzisionsteile die CNC-Bearbeitungsproduktion, aber nach Abschluss der CNC-Bearbeitung ist die Oberfläche vieler Produkte immer noch relativ rau, dieses Mal müssen Sie eine sekundäre Oberflächenbearbeitung durchführen.
Erstens ist die Oberflächenbehandlung nicht für alle CNC-Bearbeitungsprodukte geeignet. Einige Produkte können nach der Verarbeitung direkt verwendet werden, andere müssen von Hand poliert, galvanisiert, oxidiert, Radiumschnitzerei, Siebdruck, Pulversprühen und andere spezielle Verfahren durchgeführt werden. Hier sind einige Dinge, die Sie über die Oberflächenbehandlung wissen sollten.
1, Verbesserung der Produktgenauigkeit ; Nach Abschluss der Produktverarbeitung weisen einige Produkte eine raue Oberfläche auf und hinterlassen eine große Restspannung, die die Genauigkeit des Produkts verringert und die Präzision der Übereinstimmung zwischen den Teilen beeinträchtigt. In diesem Fall ist eine Oberflächenbehandlung des Produkts erforderlich.
2, sorgen für Verschleißfestigkeit des Produkts ; Wenn die Teile in normalen Nutzungsszenarien mit anderen Teilen interagieren, führt eine langfristige Nutzung zu einem erhöhten Verschleiß der Teile, was auch eine Bearbeitung der Produktoberfläche erfordert, um die Lebensdauer der Teile zu verlängern.
3, die Korrosionsbeständigkeit des Produkts verbessern ; Teile, die über einen längeren Zeitraum an stark korrosiven Orten eingesetzt werden, erfordern eine spezielle Oberflächenbehandlung, die das Polieren und Aufsprühen von Korrosionsschutzmitteln erfordert. Verbessern Sie die Korrosionsbeständigkeit und Lebensdauer des Produkts.
Die oben genannten drei Punkte sind die Voraussetzungen für die Oberflächenbearbeitung nach der CNC-Präzisionsteilebearbeitung, und im Folgenden werden verschiedene Oberflächenbehandlungsmethoden vorgestellt.
01. Was ist Galvanisieren?
Unter Galvanisieren versteht man die Oberflächentechnologie, bei der durch Elektrolyse in einer Salzlösung, die die metallisierte Gruppe enthält, ein fester Metallfilm auf der Oberfläche des Substrats erhalten wird, wobei die metallisierte Gruppe als Kathode und die metallisierte Gruppe oder ein anderer inerter Leiter als Anode darunter dient Wirkung von Gleichstrom.
02. Warum galvanisieren?
Der Zweck der Galvanisierung besteht darin Verbessern Sie das Erscheinungsbild des Materials und verleihen Sie der Oberfläche des Materials gleichzeitig verschiedene physikalische und chemische Eigenschaften , wie Korrosionsbeständigkeit, dekorative, Verschleißfestigkeit, Löt- und elektrische, magnetische, optische Eigenschaften.
03. Welche Arten und Anwendungen gibt es beim Galvanisieren?
1, verzinkt
Die verzinkte Schicht ist von hoher Reinheit und ist eine anodische Beschichtung. Die Zinkschicht übernimmt eine mechanische und elektrochemische Schutzfunktion für die Stahlmatrix.
Daher wird die verzinkte Schicht häufig in Maschinen, Hardware, Elektronik, Instrumenten, der Leichtindustrie und anderen Bereichen verwendet und ist eine der am häufigsten verwendeten Beschichtungsarten.
2. Verkupferung
Die Kupferbeschichtung ist eine kathodische Polarbeschichtung, die nur eine mechanische Schutzfunktion für das Grundmetall übernehmen kann. Die Verkupferungsschicht wird in der Regel nicht allein als schützende dekorative Beschichtung verwendet, sondern als untere oder mittlere Schicht der Beschichtung, um die Haftung zwischen der Oberflächenbeschichtung und dem Grundmetall zu verbessern.
Im Bereich der Elektronik, wie z. B. Durchsteckverkupferung auf Leiterplatten, sowie Hardwaretechnik, Kunsthandwerk, Möbeldekoration und anderen Bereichen.
3. Vernickelung
Die Vernickelungsschicht ist eine Schutzschicht mit negativer Polarität, die nur eine mechanische Schutzwirkung auf das Grundmetall hat. Neben der direkten Verwendung einiger medizinischer Geräte und Batteriegehäuse wird die vernickelte Schicht häufig als untere oder mittlere Zwischenschicht verwendet, die in der täglichen Hardware, der Leichtindustrie, Haushaltsgeräten, Maschinen und anderen Industrien weit verbreitet ist.
4. Verchromung
Die verchromte Schicht ist eine Beschichtung mit negativer Polarität, die nur eine mechanische Schutzfunktion übernimmt. Dekorative Verchromung, die untere Schicht ist im Allgemeinen poliert oder galvanisch abgeschieden.
Weit verbreitet in Instrumenten, Messgeräten, alltäglicher Hardware, Haushaltsgeräten, Flugzeugen, Automobilen, Motorrädern, Fahrrädern und anderen exponierten Teilen. Zur funktionellen Verchromung gehören Hartverchromung, poröses Chrom, Schwarzchrom, Opalchrom usw.
Die Hartchromschicht wird hauptsächlich für verschiedene Messsättel, Messgeräte, Schneidwerkzeuge und verschiedene Arten von Wellen verwendet. Die Chromschicht mit losen Löchern wird hauptsächlich bei Kolbenversagen im Zylinderhohlraum verwendet. Die schwarze Chromschicht wird für Teile verwendet, die eine matte Oberfläche und Verschleißfestigkeit benötigen, wie z. B. Luftfahrtinstrumente, optische Instrumente, Fotoausrüstung usw. Opaleszierendes Chrom wird hauptsächlich in verschiedenen Messgeräten verwendet.
5. Verzinnen
Im Vergleich zum Stahlsubstrat ist Zinn eine negativ polare Beschichtung, während es im Vergleich zum Kupfersubstrat eine Anodenbeschichtung darstellt. Die Verdünnungsschicht wird hauptsächlich als Schutzschicht aus dünnem Blech in der Dosenindustrie verwendet, und der größte Teil der Tempergusshaut besteht aus verzinntem Eisenblech. Ein weiterer wichtiger Einsatzbereich von Zinnbeschichtungen liegt in der Elektronik- und Energieindustrie.
6, Legierungsüberzug
In einer Lösung werden zwei oder mehr Metallionen gleichzeitig auf der Kathode ausgefällt, um einen gleichmäßigen, feinen Beschichtungsprozess zu bilden, der als Legierungsplattierung bezeichnet wird.
Die Legierungsgalvanisierung ist der Einzelmetallgalvanisierung hinsichtlich Kristalldichte, Porosität, Farbe, Härte, Korrosionsbeständigkeit, Verschleißfestigkeit, magnetischer Leitfähigkeit, Verschleißfestigkeit und Hochtemperaturbeständigkeit überlegen.
Es gibt mehr als 240 Arten von Galvanisierungslegierungen, aber weniger als 40 Arten werden tatsächlich in der Produktion verwendet. Es wird im Allgemeinen in drei Kategorien unterteilt: schützende Legierungsbeschichtung, dekorative Legierungsbeschichtung und funktionelle Legierungsbeschichtung .
Weit verbreitet in der Luftfahrt, Luft- und Raumfahrt, Navigation, Automobil, Bergbau, Militär, Instrumenten, Messgeräten, visueller Hardware, Geschirr, Musikinstrumenten und anderen Branchen.
Zusätzlich zu den oben genannten gibt es noch andere chemische Beschichtungen, Verbundbeschichtungen, Nichtmetallbeschichtungen, Vergoldungen, Silberbeschichtungen usw.
Die Oberfläche der durch CNC-Bearbeitung oder 3D-Druck bearbeiteten Artikel ist manchmal rau und die Oberflächenanforderungen an die Produkte sind hoch, sodass sie poliert werden müssen.
Unter Polieren versteht man den Einsatz mechanischer, chemischer oder elektrochemischer Maßnahmen zur Reduzierung der Oberflächenrauheit des Werkstücks, um eine helle, flache Oberflächenbearbeitungsmethode zu erhalten.
Polieren kann nicht die Maßhaltigkeit oder geometrische Genauigkeit des Werkstücks verbessern, sondern dient dem Zweck, eine glatte Oberfläche oder Spiegelglanz zu erhalten und manchmal auch, um Glanz zu beseitigen (Auslöschung).
Im Folgenden werden einige gängige Poliermethoden beschrieben:
01. Mechanisches Polieren
Das mechanische Polieren erfolgt durch Schneiden, plastische Verformung der Oberfläche des Materials, um die polierte konvexe und glatte Oberfläche zu polieren. Dabei werden im Allgemeinen Schleifsteinstreifen, Wollscheiben, Schleifpapier usw. verwendet. hauptsächlich manueller Betrieb , Oberflächenqualitätsanforderungen können zur superfeinen Poliermethode verwendet werden.
Unter Superfinish-Polieren versteht man die Verwendung spezieller Schleifwerkzeuge, bei denen die Polierflüssigkeit ein Schleifmittel enthält und fest auf die zu bearbeitende Oberfläche des Werkstücks gepresst wird, um eine Hochgeschwindigkeitsrotation zu ermöglichen. Dieses Verfahren wird häufig bei Formen für optische Linsen verwendet.
02. Chemisches Polieren
Beim chemischen Polieren werden die mikroskopisch kleinen hervorstehenden Teile der Materialoberfläche im chemischen Medium bevorzugt aufgelöst als die konkaven Teile, um eine glatte Oberfläche zu erhalten.
Der Hauptvorteil dieser Methode besteht darin, dass sie keine komplexe Ausrüstung erfordert, das Werkstück mit komplexer Form polieren kann und viele Werkstücke gleichzeitig mit hoher Effizienz polieren kann.
Das Kernproblem des chemischen Polierens ist die Aufbereitung der Polierflüssigkeit.
03. Elektrolytisches Polieren
Das Grundprinzip des elektrolytischen Polierens ist das gleiche wie das des chemischen Polierens, d. h. die Oberfläche wird geglättet, indem kleine hervorstehende Teile auf der Oberfläche des Materials selektiv aufgelöst werden.
Im Vergleich zum chemischen Polieren kann der Effekt der Kathodenreaktion eliminiert werden und der Effekt ist besser.
04. Ultraschallpolieren
Das Werkstück wird in die Schleifmittelsuspension gegeben und im Ultraschallfeld zusammengefügt, und das Schleifmittel wird auf der Werkstückoberfläche mithilfe der Schwingung der Ultraschallwelle geschliffen und poliert.
Die makroskopische Kraft der Ultraschallbearbeitung ist gering und verursacht keine Verformung des Werkstücks, aber die Herstellung und Installation von Werkzeugen ist schwieriger.
05. Flüssiges Polieren
Beim Flüssigkeitspolieren werden mit hoher Geschwindigkeit fließende Flüssigkeiten und die darin enthaltenen Schleifpartikel verwendet, um die Oberfläche des Werkstücks zu waschen und so den Polierzweck zu erreichen.
Gängige Methoden sind: Schleifstrahlbearbeitung, Flüssigkeitsstrahlbearbeitung, hydrodynamisches Schleifen Und so weiter. Hydrodynamisches Schleifen wird durch hydraulischen Druck angetrieben, damit das flüssige Medium, das die Schleifpartikel trägt, mit hoher Geschwindigkeit durch die Oberfläche des Werkstücks fließt.
Das Medium besteht hauptsächlich aus speziellen Verbindungen mit guter Fließfähigkeit bei niedrigem Druck und gemischt mit Schleifmitteln, bei denen es sich um Siliziumkarbidpulver handeln kann.
06. Magnetisches Schleifen und Polieren
Beim magnetischen Schleifen und Polieren wird magnetisches Schleifmittel unter Einwirkung eines Magnetfelds verwendet, um eine Schleifbürste zu bilden und das Werkstück zu schleifen.
Diese Methode bietet die Vorteile einer hohen Verarbeitungseffizienz, einer guten Qualität, einer einfachen Kontrolle der Verarbeitungsbedingungen und guter Arbeitsbedingungen.
Die oben genannten sind 6 gängige Polierverfahren.
HONSCN Precision ist seit 20 Jahren ein professioneller Hersteller von CNC-Bearbeitungen. Zusammenarbeit mit mehr als 1.000 Unternehmen, umfassende Technologieakkumulation, leitendes Technikerteam, herzlich willkommen, maßgeschneiderte Verarbeitung zu konsultieren! Kundendienst
Die CNC-Metallbearbeitung ersetzt in zahlreichen Branchen andere Fertigungstechnologien. Der medizinische Bereich gilt als ein Bereich, in dem Fehler selten sind, und auch bei der Herstellung medizinischer Teile gelten die gleichen Regeln, da hier Menschenleben auf dem Spiel stehen und selbst kleine Fehler zu schwerwiegenden gesundheitlichen Problemen oder sogar zum Tod führen können. Daher müssen die Bearbeitungstechniken, die Maschinisten zur Herstellung medizinischer Teile verwenden, enge Toleranzen und hochpräzise Messungen unterstützen.
Die CNC-Metallbearbeitung erfreut sich aufgrund ihrer Fähigkeit, detaillierte und präzise Ergebnisse in Massenproduktion herzustellen, wachsender Beliebtheit, was dazu geführt hat, dass immer mehr Hersteller in der Branche CNC-Maschinen verwenden.
Bei der CNC-Bearbeitung handelt es sich um eine Fertigungsmethode, bei der die Werkzeugbewegung durch vorprogrammierte Computersoftware gesteuert wird. Alle medizinischen Produkte können mit Hilfe des CNC-Fräsens und Drehens präzise und schnell hergestellt werden. Schauen wir uns die Hauptvorteile der CNC-Bearbeitungsnachfrage im Gesundheitswesen an:
Kein festes Werkzeug
Die CNC-Bearbeitung ist unübertroffen in Bezug auf schnelle Durchlaufzeiten und minimale Investitionen in der Kleinserienfertigung, selbst bei Einwegprodukten. Teile für die Medizinindustrie müssen oft schnell und in kleinen Stückzahlen hergestellt werden. Gleichzeitig ermöglicht die CNC-Metallbearbeitung die Herstellung von Teilen ohne spezielle Werkzeuge, was den Herstellungsprozess verlängern kann, aber auch ohne den Einsatz von Werkzeugen eine hervorragende Qualität und Präzision bietet.
Keine Mengenbegrenzung
Nachdem Sie eine digitale CAD-Datei (Computer Aided Design) erstellt haben, können Sie daraus ganz einfach per Knopfdruck ein Schneidprogramm erstellen. Die Codierungsanwendung kann ein einzelnes Teil oder eine beliebige Anzahl von Teilen mit höchster Präzision und Genauigkeit herstellen. Dies ist ein großer Vorteil bei der Herstellung von Einweg- oder kundenspezifischen Einwegteilen, wie z. B. hochspezialisierten medizinischen Geräten, Geräten, Ausrüstungen, Prothesen und anderen medizinischen oder chirurgischen Produkten. Andere Verfahren erfordern eine Mindestbestellgröße, um die benötigten Rohmaterialien zu erhalten, was bestimmte Projekte undurchführbar macht, während für die CNC-Bearbeitung keine Mindestbestellgröße erforderlich ist.
Hohe Toleranz
Viele medizinische Geräte erfordern einen großen Toleranzbereich, und mit CNC-Maschinen ist dies leicht zu erreichen. Die Oberflächenbeschaffenheit ist in der Regel sehr gut und erfordert nur minimale Nachbehandlung, was Zeit und Geld spart, aber das ist nicht der wichtigste Gesichtspunkt. Im Allgemeinen ist bei medizinischen Hilfsgütern und Geräten vor allem zu beachten, dass sie für ihren Zweck geeignet sein müssen, und jede Abweichung vom Standard kann eine Katastrophe bedeuten.
Schnelle Maschine
CNC-Maschinen sind schneller und können 24 Stunden am Tag, 365 Tage im Jahr arbeiten. Abgesehen von der routinemäßigen Wartung sind Reparaturen und Aufrüstungen die einzigen Fälle, in denen Hersteller ihre Geräte nicht mehr verwenden.
Digitale CAD-Dateien sind leichtgewichtig und flexibel
Produktdesigner, medizinische Fachkräfte und Fertigungsfachleute können digitale Programme schnell und einfach von einem Ort zum anderen übertragen. Die Technologie verbessert die CNC-Bearbeitungsfähigkeiten erheblich, um hochwertige medizinische Spezialgeräte und Ausrüstungslösungen herzustellen, unabhängig vom geografischen Standort, wann und wo sie benötigt werden. Diese Funktion der CNC-Bearbeitung ist besonders in zeitkritischen medizinischen Umgebungen sehr praktisch.
Die CNC-Bearbeitung hat die Art und Weise revolutioniert, wie medizinische Geräte und Geräte entworfen, hergestellt, personalisiert und verwendet werden. Die Präzision, Anpassung und Geschwindigkeit der CNC-Bearbeitung verändert die Patientenversorgung, ermöglicht eine personalisierte Behandlung und verbessert die chirurgischen Ergebnisse.
Die Technologie ebnet den Weg für bahnbrechende Innovationen in der Prothetik, bei Geräten und Therapeutika und treibt Fortschritte in vielen Bereichen des Gesundheitswesens voran.
Die CNC-Bearbeitung bringt viele Vorteile für den medizinischen Bereich, darunter:
Präzision und Genauigkeit
Die Betriebspräzision von CNC-Werkzeugmaschinen ist extrem hoch. Dieses Maß an Präzision ist für die Herstellung chirurgischer Instrumente, Implantate und Mikrogeräte für die minimalinvasive Chirurgie unerlässlich. Die Präzision und Konsistenz der CNC-Bearbeitung verbessert die Leistung bei medizinischen Eingriffen und verringert das Risiko von Komplikationen.
Dies ist besonders wichtig für Chirurgen, die bei der Ausführung heikler Aufgaben auf hochentwickelte und zuverlässige Instrumente angewiesen sind. Von Skalpellgriffen bis hin zu chirurgischen Roboterassistenten bietet die CNC-Bearbeitung hochwertige Werkzeuge, die die Genauigkeit und Patientensicherheit verbessern.
Anpassung und Personalisierung
Die CNC-Bearbeitung ermöglicht die Herstellung personalisierter medizinischer Teile und Geräte basierend auf der einzigartigen Anatomie eines Patienten. Diese Fähigkeit ermöglicht die Herstellung personalisierter orthopädischer Implantate, Zahnprothesen, Hörgeräte und anderer Geräte.
Anhand patientenspezifischer Daten wie 3D-Scans oder MRT-Bilder können CNC-Maschinen präzise Artikel herstellen, die perfekt zum Körper des Patienten passen. Dies verbessert den Komfort, die Funktion und die Wirksamkeit der Behandlung und beschleunigt die Genesung des Patienten.
Komplexe Form und Struktur
Durch die CNC-Bearbeitung können komplexe Geometrien und komplexe Innenstrukturen erzeugt werden, die mit anderen Fertigungsmethoden oft nur schwer zu erreichen sind. Die Fähigkeit, innere Hohlräume, Kanäle und empfindliche Merkmale präzise zu schnitzen, ist besonders wertvoll bei der Herstellung von Implantaten, Mikrogeräten und chirurgischen Instrumenten.
Rapid-Prototyping
Mit Prototyping können Mediziningenieure und Designer Funktionsmodelle von Teilen und Geräten erstellen und so Design, Montage und Funktionalität vor Beginn der Produktion bewerten. Die Kombination aus CAD-Software (Computer Aided Design) und CNC-Werkzeugmaschinen ermöglicht die schnelle Umsetzung digitaler Entwürfe in physische Prototypen.
Dies ermöglicht iterative Designverbesserungen und trägt dazu bei, dass medizinische Geräte vor der Veröffentlichung gründlich getestet und optimiert werden. In einem sich weiterentwickelnden Bereich kann Rapid Prototyping die Innovation fördern und dazu beitragen, neue medizinische Fortschritte schneller auf den Markt zu bringen.
Prozessoptimierung
Die Integration der CNC-Bearbeitung mit fortschrittlichen Technologien wie Automatisierung und künstlicher Intelligenz (KI) minimiert Fehler und ermöglicht automatisierte Qualitätskontrollprozesse. Dies erhöht die Effizienz, verkürzt die Produktionszeit und verbessert die Produktqualität, was alles zu besseren Patientenergebnissen beiträgt.
Darüber hinaus können automatisierte CNC-Systeme kontinuierlich mit minimaler Mensch-Maschine-Interaktion zwischen den Vorgängen arbeiten. Einige CNC-Maschinen sind auch in der Lage, mehrere Achsen zu bearbeiten und gleichzeitig Aufgaben auf verschiedenen Oberflächen von Teilen auszuführen.
Durch die Neuprogrammierung von Maschinen können Hersteller schnell zwischen der Produktion eines Teiletyps und eines anderen wechseln. Dies reduziert die Umrüstzeiten und ermöglicht die Herstellung unterschiedlicher Teile auf derselben Maschine in einer Schicht. Diese Funktionen tragen dazu bei, Produktionszyklen zu beschleunigen, Ausfallzeiten zu reduzieren und die Gesamtproduktion zu steigern.
Flexible Materialauswahl
Die CNC-Bearbeitung eignet sich für eine Vielzahl von Materialien, darunter Metalle, Kunststoffe und Verbundwerkstoffe. Diese Vielseitigkeit ermöglicht es Herstellern, Faktoren wie Biokompatibilität, Haltbarkeit und Funktionalität zu berücksichtigen, um das am besten geeignete Material für eine bestimmte medizinische Anwendung auszuwählen.
Kosteneinsparung
Obwohl industrielle CNC-Maschinen teuer sein können, bieten sie auf lange Sicht erhebliche Möglichkeiten zur Kosteneinsparung. Durch den Wegfall spezieller Vorrichtungen, Vorrichtungen und Werkzeuge für jedes Teil trägt die CNC-Bearbeitung dazu bei, die Rüstzeit zu minimieren, die Produktion zu vereinfachen und die Herstellungskosten zu senken.
Die Technologie reduziert außerdem Abfall und Kosten durch Materialoptimierung. Dies ist besonders im medizinischen Bereich wichtig, da Implantate häufig aus hochwertigen Materialien wie Titan und Platin hergestellt werden. Die erhöhte Effizienz und Produktivität der CNC-Bearbeitung trägt im Laufe der Zeit auch zu Kosteneinsparungen bei.
Aufgrund der kritischen Natur medizinischer Geräte und Komponenten benötigt die Medizinindustrie qualitativ hochwertige und hochpräzise Produkte. Daher wird die CNC-Bearbeitung häufig in medizinischen Anwendungen eingesetzt. Im Folgenden stellen wir vor, was medizinische CNC-Bearbeitungsprodukte sind.
1. Medizinische Implantate
Orthopädische Implantate: CNC-Bearbeitung wird häufig zur Herstellung orthopädischer Implantate wie Hüft- und Knieersatz eingesetzt.
Zahnimplantate: Nutzen Sie die CNC-Bearbeitung zur Herstellung präziser und individueller Zahnimplantate.
2. Elektronische medizinische Geräte
MRT-Komponenten: Einige Komponenten von Magnetresonanztomographiegeräten (MRT), wie Strukturen, Halterungen und Gehäuse, werden häufig mit CNC bearbeitet.
Gehäuse für Diagnosegeräte: Mithilfe der CNC-Bearbeitung werden Gehäuse und Gehäuse für eine Vielzahl medizinischer Diagnosegeräte hergestellt, um präzise Abmessungen, Haltbarkeit und Kompatibilität mit elektronischen Komponenten zu gewährleisten.
3. Medizinische chirurgische Instrumente
Skalpelle und Klingen: Die CNC-Bearbeitung wird zur Herstellung chirurgischer Instrumente wie Skalpelle und Klingen eingesetzt.
Pinzetten und Klemmen: Chirurgische Instrumente mit komplexem Design, wie Pinzetten und Klemmen, werden in der Regel CNC-bearbeitet, um die gewünschte Genauigkeit zu erreichen.
4. Prothetik und Orthesen
Maßgeschneiderte Prothesenkomponenten: Die CNC-Bearbeitung wird zur Herstellung kundenspezifischer Prothesenkomponenten verwendet, einschließlich Akzeptanzkammerkomponenten, Gelenken und Anschlüssen.
Orthopädische Brackets: Komponenten orthopädischer Brackets, die verschiedene Körperteile stützen und ausrichten, können CNC-bearbeitet werden.
5. Endoskopmontage
Endoskopgehäuse und -teile: Die CNC-Bearbeitung wird zur Herstellung von Teilen von Endoskopgeräten verwendet, einschließlich Gehäusen, Anschlüssen und Strukturteilen.
6. Prototyp einer medizinischen Ausrüstung
Prototyping-Komponenten: Die CNC-Bearbeitung wird häufig für das Rapid Prototyping verschiedener medizinischer Geräte eingesetzt.
F schließlich, m Die Bearbeitung medizinischer Geräte ist ein Prozess, der ein hohes Maß an Präzision und Genauigkeit erfordert. Daher eignet sich die Technologie sehr gut für die CNC-Bearbeitung.
Honscn-Präzision ist ein zuverlässiger Hersteller medizinisch wichtiger Komponenten für chirurgische Instrumente und Werkzeuge sowie für den Prototypenbau medizinischer Geräte . Mit 20 Jahren Erfahrung in der CNC-Fertigung sind wir von der Notwendigkeit getrieben, für jedes bearbeitete Teil die engsten Toleranzen und Genauigkeit sicherzustellen. Unsere erfahrenen Mechaniker können bearbeitete Teilekonstruktionen nach den höchsten Standards für alle Aspekte der medizinischen Industrie maßschneidern. Möchten Sie Ihr CNC-Bearbeitungsprojekt bei Honscn Precision starten? Klicken Sie hier, um Ihren individuellen Service zu starten
Kontakt: Ada Li
Tel:86 17722440307
WhatsApp: +86 17722440307
Email: Ada@honscn.com
Hinzufügen: 4F, Nr. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China