Honscn Co.,Ltd は CNC オートバイ部品の主要メーカーとして、厳格な品質管理プロセスを実施しています。 品質管理管理を通じて、製品の製造上の欠陥を調査し、改善します。 私たちは、品質管理の目標を達成するために、QC分野で長年の経験を持つ教育を受けた専門家で構成されるQCチームを採用しています。
HONSCN 製品は多くの中国や西洋のプロバイダーに愛され、求められています。 優れた産業チェーンの競争力とブランドの影響力により、あなたのような企業は収益を増やし、コスト削減を実現し、コア目標に集中することができます。 これらの製品は、信頼できるパートナーおよびサプライヤーとして、お客様に完全な満足を提供し、目標を達成するという当社のコミットメントを強調する、多くの賞賛を受けています。
Honscn では、お客様は人気の CNC オートバイ部品を含む製品とワンストップ サービスを入手できます。 さまざまなスタイルと仕様の製品をカスタマイズすることができます。 国際物流のフルレンジの輸送システムで、商品が安全かつ迅速に配達されることを保証します。
1. 高精度部品: CNC 加工では、センサー、マイクロコントローラー、小型機械部品など、3C エレクトロニクスの機能に不可欠な小型の高精度コンポーネントを作成できます。
2. カスタマイズされた変更: 修理や改造を目的として、CNC 加工では、すぐに入手可能な部品がない古い電子機器や製造中止になった電子機器の交換部品やカスタマイズされた改造を作成できます。
3. 品質と一貫性: CNC 機械加工は、電子部品の高品質な生産と一貫性を保証し、3C 業界が要求する厳しい公差と仕様を満たします。
4.. 大量生産: 設計が完了すると、3C エレクトロニクス業界でのカスタム コンポーネントの大量生産に CNC 機械加工を採用でき、各部品が正確な仕様を満たしていることが保証されます。
全体として、CNC カスタム加工は、現代の電子機器に必要な精密でカスタマイズされた高品質のコンポーネントの作成を可能にすることで、3C エレクトロニクス業界で極めて重要な役割を果たしています。 カスタム CNC 生産サービスについては、当社をお選びください。最高品質のサービスと最も競争力のある価格を提供します。 3Cの革新と発展を一緒に推進しましょう エレクトロニクス 製造業!
世界の第四次産業革命の到来、科学技術と社会生産の継続的な発展に伴い、機械製造技術は大きな変化を遂げ、機械製品の構造はますます合理化し、その性能、精度、効率はますます向上しています。機械製品を加工する生産設備には、高性能、高精度、高度な自動化の要件が求められています。 通常の工作機械では製造できないという問題を解決し、単一かつ少量のバッチ生産、特に一部の複雑な部品の自動加工を実現するために、CNC 機械加工が登場しました。
現在、中国は加工立国となっていますが、全国各地に精密部品加工工場があります。 中国税関総署のデータによると、2023年1月と2月の中国工作機械の累計輸出量は236万4123台(236万4100台)に達し、ハイエンドのCNCカスタマイズ精密部品から一般的な標準製品まで標準化を達成できた。大量生産では、CNC技術を応用することで部品の自動加工を実現し、生産効率を向上させることができます。 特に自動車製造、航空宇宙、電子機器製造などの分野において、CNC技術の応用は大きな可能性を秘めています。 CNC技術の応用により部品の自動加工を実現し、生産効率を向上させます。 特に自動車製造、電子機器製造などの分野において、CNC技術の応用は大きな可能性を秘めています。
CNC 加工は、エンジン、トランスミッション、シャーシ、ブレーキ システム、ステアリング システムなどの自動車部品の分野で広く使用されています。 しかし、精密加工のどの分野においても、高精度・高速化はユーザーの注文を獲得するための重要な競争手段です。
以下は、自動車部品分野における CNC 加工の具体的な応用例です。:
エンジン部品加工:CNC加工により、シリンダーブロック、クランクシャフト、コンロッド、バルブシート等、高精度、高強度が要求されるエンジンの各種部品の製造が可能です。
1.トランスミッション部品加工:CNC加工により、高精度・高強度が要求されるトランスミッションギア、クラッチ、トランスミッションシャフト等のトランスミッション系の各種部品の製造が可能
2.ブレーキ部品加工:高精度・高品質が要求されるブレーキディスク、ブレーキパッド、ブレーキなどのブレーキシステムの各種部品をCNCマシニングで製造できます。
3.ステアリング部品加工:CNC加工は、高精度と高強度が必要なステアリングギア、ステアリングロッド、ステアリングマシンなどのステアリングシステムのさまざまな部品の製造に使用できます。
CNC加工技術の継続的な発展と自動車の車体設計や自動車内部電子部品の加工などの適用分野の拡大に伴い、オートメーション分野におけるCNCカスタム加工技術の適用範囲はますます広範囲になるでしょう。 今後もCNC加工技術は自動車製造分野で重要な役割を果たしていくでしょう。
科学技術の急速な発展に伴い、CNC加工技術は医療業界でますます広く使用されています。 その高い精度、効率、互換性により、医療機器や機器の製造に強力な保証が提供されます。
国際市場調査機関の統計によると、世界の医療機器市場は年々増加しており、2025年までに約5,200億米ドルに達すると予想されています。 中国でも医療機器市場規模は拡大を続けており、2023年には1,600億元に達すると予想されています。 これに関連して、医療業界における CNC 加工技術の応用は特に重要です。
CNC 機械加工は、金属や合金からセラミックまで、幅広い材料を加工できます。 ただし、医療機器や医療機器にはいくつかの要件があります。 部品または製品の特定の用途に応じて、材料は生体適合性であるか、医療グレードとして承認されている必要があります。
CNC 加工技術により、低侵襲手術器具や内視鏡など、正確かつ正確で複雑な手術器具を製造できることが理解されています。 これらの器具は、外科手術中の安全性と有効性を確保するために、高い精度と安定性を備えている必要があります。 関連データによると、世界の外科用機器市場は 2024 年までに約 50 億ドルに達すると予想されています。
さらに、人工関節、インプラント、整形外科用機器の製造における CNC 加工の応用により、患者にはより多くの治療選択肢が提供されます。 統計によると、世界の人工関節市場規模は2024年までに約120億ドルに達すると予想されています。 医療機器部品の製造においてもCNC加工技術の利点が最大限に活かされています。 医療用ポンプ、CT、MRI スキャナーなどのハイエンド医療機器のコア コンポーネントは、CNC 加工技術の高精度、高効率、信頼性の恩恵を受けています。
生体適合性材料に関しては、CNC加工技術と医療機器製造の互換性も広く認知されています。 統計によると、生体適合性材料の世界市場は、2019年までに約55億ドルに達すると予想されています。 2024
CNC 加工技術がカスタマイズされた医療部品の製造にも対応していることは注目に値します。 これは、希少疾患の治療や特殊な患者のリハビリテーションにとって非常に重要です。 統計によると、カスタマイズされた医療部品の世界市場は、2024 年までに約 45 億ドルに達すると予想されています。
要約すると、医療業界における CNC 加工技術の応用は、医療機器や機器の性能向上を強力に保証します。 現在の科学技術の急速な発展の時代において、CNC 加工技術が医療業界でより大きな役割を果たし、中国の医療目的の繁栄な発展を助けると信じる理由があります。 医療機器市場の継続的な拡大に伴い、医療業界におけるCNC加工技術の応用の可能性はさらに広がるでしょう。
機械加工の分野では、CNC 加工の加工方法と工程の分割後、これらの加工方法と加工順序を合理的に配置することが加工ルートの主な内容です。 一般に、機械部品の CNC 加工には次のものが含まれます。 切断、熱処理、表面処理、洗浄、検査などの付帯工程を行っております。 これらのプロセスの順序は、部品の品質、生産効率、コストに直接影響します。 したがって、CNC加工ルートを設計するときは、切断、熱処理、補助プロセスの順序を合理的に配置し、それらの間の接続の問題を解決する必要があります。
CNC 加工ルートを開発する場合は、上記の基本手順に加えて、材料の選択、治具の設計、装置の選択などの要素を考慮する必要があります。 材料の選択は部品の最終性能に直接関係しており、材料が異なれば切断パラメータの要件も異なります。 治具の設計は、加工プロセスにおける部品の安定性と精度に影響を与えます。 設備選定では、製品の特性に応じて、生産ニーズに適した工作機械の種類を決定する必要があります。
1、精密機械部品の加工方法は表面の特性に応じて決定する必要があります。 各種加工法の特性を熟知し、加工経済性や面粗度を把握した上で、加工品質、生産効率、経済性を確保できる方法を選択します。
2、大まかな基準と細かい基準の選択の原則に従って、適切な図面の位置基準を選択し、各プロセスの位置基準を合理的に決定します。
3 , 部品の機械加工ルートを開発する際には、部品の分析に基づいて部品の粗、中仕上げ、仕上げの段階に分ける必要があります。 プロセスの集中と分散の程度を決定し、表面の処理順序を合理的に配置します。 複雑な部品の場合は、最初にいくつかの処理方式を検討し、比較分析した後に最も合理的な処理方式を選択できます。
4、各工程の加工代と加工サイズと公差を決定します。
5、工作機械と作業者、クリップ、数量、切削工具を選択します。 機械設備の選択は、加工の品質を確保するだけでなく、経済的かつ合理的でなければなりません。 量産の条件では、一般的には汎用の工作機械や専用の治具を使用する必要があります。
6、各主要工程の技術要件と検査方法を決定します。 各工程の切削量と時間割当ての決定は、通常、単一の小ロット生産プラントのオペレーターによって決定されます。 通常、加工プロセスカードには指定されません。 しかし、中ロットや量産工場では、生産の合理性やリズムのバランスを確保するために、カット量を指定する必要があり、勝手に変更してはなりません。
最初は荒くて、その後は細かくなります
荒旋削→中精密旋削→微旋削の順で加工精度が徐々に向上します。 荒旋盤はワーク表面の取り代の大部分を短時間で除去できるため、切り代の除去率が向上し、取り代の均一性の要求にも応えます。 荒旋削後の残量が仕上げ要件を満たさない場合は、仕上げ用の中仕上げ車を手配する必要があります。 精密な自動車は、加工精度を確保するために、図面サイズに従って部品の輪郭を確実に切断する必要があります。
最初に近づいてから遠くへ
通常、ツールの移動距離を短縮し、空移動時間を短縮するために、ツールに近い部品を最初に加工し、次にツールから遠い部品を加工します。 旋削加工においては、ブランクまたは半製品の剛性を維持し、切削条件を改善することが有益です。
内部と外部の交差の原則
内面(内部キャビティ)と外面の両方を加工する部品の場合、加工順序としては、まず内外面を荒加工し、その後内外面を仕上げ加工します。 加工後に他の表面 (内面または外面) を加工した後、部品の表面 (外面または内面) の一部であってはなりません。
基本第一原則
仕上げの基準となる表面を優先してください。 これは、位置決め基準の表面が正確であればあるほど、クランプ誤差が小さくなるためです。 例えば、軸部品を加工する場合、通常、最初に中心穴を加工し、その後、中心穴を精度基準にして外周面や端面を加工します。
1つ目と2つ目の原理
ブランクの主面にある最新の欠陥を早期に発見するために、部品の主作業面とアセンブリベース面を最初に処理する必要があります。 最終仕上げの前に、二次面を主機械加工面上にある程度まで散在させて配置することができます。
ホール前のフェースの原理
ボックス部やブラケット部は平面外形サイズが大きいため、平面を先に加工してから穴等のサイズを加工するのが一般的です。 この処理シーケンスの配置は、一方では処理面の位置決めを伴うため、安定性と信頼性が高くなります。一方で、加工面上での穴の加工が容易で、特に穴あけ加工の際に穴の軸がずれにくく、穴の加工精度を向上させることができます。
部品の機械加工プロセスを開発する場合、部品の生産種類に応じて、適切な加工方法、工作機械設備、クランプ測定ツール、ブランク、作業者の技術的要件を選択する必要があります。
現在、多くの精密部品業界はCNC機械加工生産を使用していますが、CNC機械加工が完了した後、多くの製品の表面はまだ比較的粗いため、今回は二次表面仕上げ処理を実行する必要があります。
まず、表面処理はすべてのCNC加工製品に適しているわけではなく、一部の製品は加工後に直接使用できますが、一部の製品は手研磨、電気メッキ、酸化、ラジウム彫刻、スクリーン印刷、粉末スプレーなどの特別なプロセスが必要です。 表面処理について知っておくべきことをいくつか紹介します。
1, 製品の精度を向上させる ;製品によっては加工完了後の表面が荒れ、残留応力が大きく残る場合があり、製品精度の低下や部品間の合わせ精度に影響を与えます。 この場合、製品の表面処理が必要となります。
2, 製品の耐摩耗性を提供します ;通常使用する部品が他の部品と相互作用するシナリオの場合、長期使用により部品の磨耗が増加するため、部品の耐用年数を延ばすために製品表面の処理も必要になります。
3, 製品の耐食性を向上させます ;腐食性の高い場所で長期間使用される部品には特殊な表面処理が必要であり、研磨や防食材料のスプレーが必要です。 製品の耐食性と寿命を向上させます。
以上の3点がCNC精密部品加工後の表面処理の前提条件となりますので、以下にいくつかの表面処理方法を紹介します。
01. 電気メッキとは何ですか?
電気めっきとは、金属化基を含む塩溶液中での電気分解によって基板の表面に固体金属膜を得る表面工学技術を指します。このとき、金属化基を陰極として、金属化基または他の不活性導体を陽極として使用します。直流電流の作用。
02. なぜ電気めっきをするのでしょうか?
電気めっきの目的は、 材料の表面にさまざまな物理的および化学的特性を与えながら、材料の外観を向上させます。 、耐食性、装飾性、耐摩耗性、ろう付け、電気的、磁気的、光学的特性など。
03. 電気めっきの種類と用途は何ですか?
1、亜鉛メッキ
亜鉛メッキ層は高純度で陽極酸化皮膜です。 亜鉛層は、鋼マトリックスに対して機械的および電気化学的な保護の役割を果たします。
したがって、亜鉛めっき層は機械、ハードウェア、電子機器、計器、軽工業などの分野で広く使用されており、最も広く使用されているめっき種の1つです。
2. 銅メッキ
銅コーティングは陰極極性コーティングであり、母材金属に対する機械的保護の役割のみを果たします。 銅めっき層は通常、保護装飾コーティングとして単独で使用されるのではなく、表面コーティングと母材金属の間の密着性を向上させるためのコーティングの最下層または中間層として使用されます。
プリント基板のスルーホール銅めっきなどのエレクトロニクス分野をはじめ、ハードウェア技術、工芸品、家具装飾などの分野。
3. ニッケルメッキ
ニッケルメッキ層はマイナス極性の保護層であり、母材の機械的保護効果のみを持ちます。 一部の医療機器やバッテリーシェルの直接使用に加えて、ニッケルメッキ層は下層または中間層としてよく使用され、日常のハードウェア、軽工業、家電製品、機械、その他の産業で広く使用されています。
4. クロムメッキ
クロムメッキ層はマイナス極性のコーティングであり、機械的な保護の役割のみを果たします。 装飾用クロムメッキ。下層は通常研磨または電着光沢コーティングです。
計器、メーター、日用品、家電製品、航空機、自動車、オートバイ、自転車、その他の露出部分に広く使用されています。 機能性クロムめっきには、硬質クロムめっき、多孔質クロム、黒色クロム、オパールクロム等があります。
硬質クロム層は主に各種測定キャリパー、ゲージ、切削工具、各種シャフトに使用され、ルーズホールクロム層は主にシリンダーキャビティピストンの破損に使用されます。黒色クロム層は、航空機器、光学機器、写真機器など、表面の光沢と耐摩耗性が必要な部品に使用されます。 乳白色のクロムは主にさまざまな測定ツールに使用されます。
5. 錫メッキ
スチール基板と比較すると、スズは負極性のコーティングですが、銅基板と比較すると、アノードコーティングになります。 薄化層は缶業界における薄板の保護層として主に使用されており、可鍛鉄皮膜のほとんどは鉄板の錫メッキで作られています。 錫コーティングのもう 1 つの主な用途は、エレクトロニクスおよび電力産業です。
6、合金メッキ
溶液中では、2 つ以上の金属イオンが陰極上に共沈し、合金メッキと呼ばれる均一で微細なコーティングプロセスを形成します。
合金電気めっきは、結晶密度、気孔率、色、硬度、耐食性、耐摩耗性、磁気伝導性、耐摩耗性、および高温耐性の点で単一金属電気めっきよりも優れています。
電気めっき合金は 240 種類以上ありますが、実際に生産に使用されるのは 40 種類未満です。 大まかに3つのカテゴリーに分けられます: 保護合金コーティング、装飾合金コーティング、機能合金コーティング .
航空、航空宇宙、ナビゲーション、自動車、鉱業、軍事、計器、メーター、ビジュアルハードウェア、食器、楽器、その他の業界で広く使用されています。
上記以外にも化学めっき、複合めっき、非金属めっき、金めっき、銀めっきなどがあります。
CNC 加工や 3D プリントで加工されたアイテムの表面は粗い場合があり、製品の表面要件は高いため、研磨が必要です。
研磨とは、機械的、化学的、または電気化学的作用を利用してワークピースの表面粗さを低減し、明るく平坦な表面を得る加工方法を指します。
研磨はワークの寸法精度や幾何学的精度を向上させるものではなく、平滑な表面や鏡面光沢を得ること、また場合によっては光沢を消す(消失)ことを目的としています。
いくつかの一般的な研磨方法を以下に説明します。:
01. 機械研磨
機械研磨は、切削、材料の表面の塑性変形によって研磨された凸面を除去し、滑らかな表面を研磨する方法であり、砥石ストリップ、ウールホイール、サンドペーパーなどを一般的に使用します。 主に手動操作 、表面品質要件に応じて、超微細研磨方法を使用できます。
超仕上げ研磨とは、特殊な研削工具を砥粒を含んだ研磨液中でワークの加工面に押し付けて高速回転させる研磨研磨です。 この方法は光学レンズの金型によく使われます。
02. 化学研磨
化学研磨とは、材料表面の微細な凸部を凹部より優先的に化学媒体に溶解させ、平滑な表面を得る加工です。
この方法の主な利点は、複雑な設備を必要とせず、複雑な形状のワークを研磨できること、多数のワークを同時に高効率で研磨できることです。
化学研磨の中心的な問題は研磨液の調製です。
03. 電解研磨
電解研磨の基本原理は化学研磨と同じで、材料表面の小さな突起部分を選択的に溶解して表面を平滑にします。
化学研磨に比べ陰極反応の影響を排除でき、効果が優れています。
04. 超音波研磨
ワークピースを研磨剤懸濁液に入れて超音波場に一緒に置き、超音波の振動を利用してワーク表面上で研磨剤を研削、研磨します。
超音波加工の巨視的な力は小さく、ワークピースの変形を引き起こしませんが、工具の製造と取り付けはより困難です。
05. 液体研磨
流体研磨は、高速で流れる液体とそれに含まれる研磨粒子を利用してワークピースの表面を洗浄し、研磨の目的を達成します。
一般的な方法は次のとおりです: アブレイシブジェット加工、液体ジェット加工、流体研削 など。 流体研削は油圧によって駆動され、研磨粒子を運ぶ液体媒体がワークピースの表面を高速で流れます。
媒体は主に、低圧下で良好な流動性を示す特別な化合物で作られ、炭化ケイ素粉末などの研磨材が混合されています。
06. 磁気研削研磨
磁気研削および研磨は、磁場の作用下で磁性研磨材を使用して研磨ブラシを形成し、ワークピースを研削します。
この方法は、処理効率が高く、品質が良く、処理条件の制御が容易で、良好な作業条件が得られるという利点があります。
以上が一般的な6つの研磨工程です。
HONSCN Precision は 20 年間にわたり CNC 加工の専門メーカーです。 1,000社以上の企業と協力し、深い技術蓄積、上級技術者チーム、カスタマイズされた加工の相談を歓迎します! カスタマーサービス
連絡先: エイダ・リー
電話:86 17722440307
ワッツアップ: +86 17722440307
メール: Ada@honscn.com
住所: 4F、No. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, 中国