Honscn konzentriert sich auf professionelle CNC-Bearbeitungsdienstleistungen
seit 2003.
Mit der unermüdlichen Aufmerksamkeit von Honscn Co.,Ltd wurde das CNC-Gewindedrehen von Teilen erfolgreich auf den Markt gebracht, basierend auf innovativen Ideen unseres erfahrenen Designteams, das voller Ideen und Gedanken ist. Das Produkt ist zum Liebling aller geworden und hat aufgrund unseres unerschütterlichen Engagements für die strenge Überwachung der Qualität während des Herstellungsprozesses eine vielversprechende Marktaussicht.
In den vergangenen Jahrzehnten hat sich unsere Markenbekanntheit auf die ganze Welt ausgeweitet und der jährliche Verkauf unserer Produkte steigt HONSCN Markenprodukte sind zu einer anregenden Ermutigung und Belohnung für unsere harte Arbeit geworden, den Markenwert unserer Produkte zu steigern, mit dem wir auf den globalen Markt vordringen wollen. Mit unserer HONSCN Da der Markeneinfluss ständig zunimmt, beweisen wir, dass unsere Politik der Markenorientierung zweifellos richtig ist.
Bei Honscn finden Kunden Premium-Services für alle Produkte, einschließlich der oben genannten CNC-Gewindedrehteile. Die Anpassung dient dazu, das Kunden erlebnis vom Design bis zur Verpackung zu verbessern. Außerdem ist eine Garantie verfügbar.
In den letzten Jahren hat die globale Luft- und Raumfahrtindustrie bemerkenswerte Erfolge erzielt, die nicht von der wichtigen Unterstützung der CNCM-Bearbeitungstechnologie getrennt werden können. Als effiziente und hochpräzise Bearbeitungsmethode wird die CNCM-Technologie zunehmend in der Luft- und Raumfahrtbranche eingesetzt, was eine starke Garantie für die Leistungsverbesserung von Luft- und Raumfahrtgeräten darstellt.
Internationalen Marktforschungsinstituten zufolge wird die Größe des globalen Luft- und Raumfahrtmarkts im nächsten Jahrzehnt stetig wachsen und bis 2028 voraussichtlich etwa 200 Milliarden US-Dollar erreichen. Auch in China wächst die Größe des Luft- und Raumfahrtmarkts weiter und wird bis 2026 voraussichtlich etwa 250 Milliarden Yuan erreichen. In diesem Zusammenhang ist der Einsatz der CNCM-Bearbeitungstechnologie in der Luft- und Raumfahrtindustrie besonders wichtig.
Es versteht sich, dass mit der CNC-Bearbeitungstechnologie im Luft- und Raumfahrtbereich genaue, präzise und komplexe Teile wie Flugzeugtriebwerke, Turbinenschaufeln, Flugzeugstrukturteile usw. hergestellt werden können. Diese Komponenten müssen eine hohe Genauigkeit und Stabilität aufweisen, um die Sicherheit und Leistung von Luft- und Raumfahrzeugen zu gewährleisten. Relevanten Daten zufolge wird der weltweite Markt für Luft- und Raumfahrtteile bis 2026 voraussichtlich etwa 12 Milliarden US-Dollar erreichen.
Darüber hinaus ist die hohe Effizienz der CNC-Bearbeitungstechnologie auch im Luft- und Raumfahrtbereich weit verbreitet. Im Montageprozess großer Luft- und Raumfahrzeuge wie Flugzeuge und Raketen kann die CNC-Bearbeitungstechnologie eine schnelle Massenproduktion erreichen und die Produktionseffizienz verbessern. Statistiken zufolge wird der weltweite Markt für Luft- und Raumfahrtmontage bis 2026 voraussichtlich etwa 60 Milliarden US-Dollar erreichen.
In Bezug auf die Materialien wurde die Kompatibilität der CNC-Bearbeitungstechnologie im Luft- und Raumfahrtbereich vollständig berücksichtigt. Mit der zunehmenden Anwendung neuer Materialien im Luft- und Raumfahrtbereich, wie z. B. Kohlefaserverbundwerkstoffen, Titanlegierungen usw., kann die CNC-Bearbeitungstechnologie die effiziente Verarbeitung dieser Materialien realisieren, um die Leistung und Qualität der Teile sicherzustellen. Statistiken zufolge wird der weltweite Markt für Luft- und Raumfahrtmaterialien bis 2026 voraussichtlich etwa 35 Milliarden US-Dollar erreichen.
Erwähnenswert ist, dass die CNC-Bearbeitungstechnologie auch die Herstellung kundenspezifischer Teile im Luft- und Raumfahrtsektor unterstützt. Dies ist für die Herstellung von Luft- und Raumfahrzeugen in speziellen Szenarien von großer Bedeutung. Statistiken zufolge wird der weltweite Markt für kundenspezifische Teile für die Luft- und Raumfahrt bis 2026 voraussichtlich etwa 2,5 Milliarden US-Dollar erreichen.
Zusammenfassend lässt sich sagen, dass der Einsatz der CNCM-Bearbeitungstechnologie in der Luft- und Raumfahrtindustrie eine starke Garantie für die Leistungsverbesserung von Luft- und Raumfahrtgeräten darstellt. Im Kontext der rasanten Entwicklung der chinesischen Luft- und Raumfahrtindustrie ist die Bedeutung der CNC-Bearbeitungstechnologie offensichtlich. Mit der kontinuierlichen Expansion des Luft- und Raumfahrtmarktes werden die Anwendungsaussichten der CNC-Bearbeitungstechnologie in der Luft- und Raumfahrtindustrie breiter. Wir haben Grund zu der Annahme, dass die CNC-Bearbeitungstechnologie weiterhin zum Wohlstand der Luft- und Raumfahrtindustrie beitragen wird.
Mittlerweile nutzen viele Industrien für Präzisionsteile die CNC-Bearbeitungsproduktion, aber nach Abschluss der CNC-Bearbeitung ist die Oberfläche vieler Produkte immer noch relativ rau, dieses Mal müssen Sie eine sekundäre Oberflächenbearbeitung durchführen.
Erstens ist die Oberflächenbehandlung nicht für alle CNC-Bearbeitungsprodukte geeignet. Einige Produkte können nach der Verarbeitung direkt verwendet werden, andere müssen von Hand poliert, galvanisiert, oxidiert, Radiumschnitzerei, Siebdruck, Pulversprühen und andere spezielle Verfahren durchgeführt werden. Hier sind einige Dinge, die Sie über die Oberflächenbehandlung wissen sollten.
1, Verbesserung der Produktgenauigkeit ; Nach Abschluss der Produktverarbeitung weisen einige Produkte eine raue Oberfläche auf und hinterlassen eine große Restspannung, die die Genauigkeit des Produkts verringert und die Präzision der Übereinstimmung zwischen den Teilen beeinträchtigt. In diesem Fall ist eine Oberflächenbehandlung des Produkts erforderlich.
2, sorgen für Verschleißfestigkeit des Produkts ; Wenn die Teile in normalen Nutzungsszenarien mit anderen Teilen interagieren, führt eine langfristige Nutzung zu einem erhöhten Verschleiß der Teile, was auch eine Bearbeitung der Produktoberfläche erfordert, um die Lebensdauer der Teile zu verlängern.
3, die Korrosionsbeständigkeit des Produkts verbessern ; Teile, die über einen längeren Zeitraum an stark korrosiven Orten eingesetzt werden, erfordern eine spezielle Oberflächenbehandlung, die das Polieren und Aufsprühen von Korrosionsschutzmitteln erfordert. Verbessern Sie die Korrosionsbeständigkeit und Lebensdauer des Produkts.
Die oben genannten drei Punkte sind die Voraussetzungen für die Oberflächenbearbeitung nach der CNC-Präzisionsteilebearbeitung, und im Folgenden werden verschiedene Oberflächenbehandlungsmethoden vorgestellt.
01. Was ist Galvanisieren?
Unter Galvanisieren versteht man die Oberflächentechnologie, bei der durch Elektrolyse in einer Salzlösung, die die metallisierte Gruppe enthält, ein fester Metallfilm auf der Oberfläche des Substrats erhalten wird, wobei die metallisierte Gruppe als Kathode und die metallisierte Gruppe oder ein anderer inerter Leiter als Anode darunter dient Wirkung von Gleichstrom.
02. Warum galvanisieren?
Der Zweck der Galvanisierung besteht darin Verbessern Sie das Erscheinungsbild des Materials und verleihen Sie der Oberfläche des Materials gleichzeitig verschiedene physikalische und chemische Eigenschaften , wie Korrosionsbeständigkeit, dekorative, Verschleißfestigkeit, Löt- und elektrische, magnetische, optische Eigenschaften.
03. Welche Arten und Anwendungen gibt es beim Galvanisieren?
1, verzinkt
Die verzinkte Schicht ist von hoher Reinheit und ist eine anodische Beschichtung. Die Zinkschicht übernimmt eine mechanische und elektrochemische Schutzfunktion für die Stahlmatrix.
Daher wird die verzinkte Schicht häufig in Maschinen, Hardware, Elektronik, Instrumenten, der Leichtindustrie und anderen Bereichen verwendet und ist eine der am häufigsten verwendeten Beschichtungsarten.
2. Verkupferung
Die Kupferbeschichtung ist eine kathodische Polarbeschichtung, die nur eine mechanische Schutzfunktion für das Grundmetall übernehmen kann. Die Verkupferungsschicht wird in der Regel nicht allein als schützende dekorative Beschichtung verwendet, sondern als untere oder mittlere Schicht der Beschichtung, um die Haftung zwischen der Oberflächenbeschichtung und dem Grundmetall zu verbessern.
Im Bereich der Elektronik, wie z. B. Durchsteckverkupferung auf Leiterplatten, sowie Hardwaretechnik, Kunsthandwerk, Möbeldekoration und anderen Bereichen.
3. Vernickelung
Die Vernickelungsschicht ist eine Schutzschicht mit negativer Polarität, die nur eine mechanische Schutzwirkung auf das Grundmetall hat. Neben der direkten Verwendung einiger medizinischer Geräte und Batteriegehäuse wird die vernickelte Schicht häufig als untere oder mittlere Zwischenschicht verwendet, die in der täglichen Hardware, der Leichtindustrie, Haushaltsgeräten, Maschinen und anderen Industrien weit verbreitet ist.
4. Verchromung
Die verchromte Schicht ist eine Beschichtung mit negativer Polarität, die nur eine mechanische Schutzfunktion übernimmt. Dekorative Verchromung, die untere Schicht ist im Allgemeinen poliert oder galvanisch abgeschieden.
Weit verbreitet in Instrumenten, Messgeräten, alltäglicher Hardware, Haushaltsgeräten, Flugzeugen, Automobilen, Motorrädern, Fahrrädern und anderen exponierten Teilen. Zur funktionellen Verchromung gehören Hartverchromung, poröses Chrom, Schwarzchrom, Opalchrom usw.
Die Hartchromschicht wird hauptsächlich für verschiedene Messsättel, Messgeräte, Schneidwerkzeuge und verschiedene Arten von Wellen verwendet. Die Chromschicht mit losen Löchern wird hauptsächlich bei Kolbenversagen im Zylinderhohlraum verwendet. Die schwarze Chromschicht wird für Teile verwendet, die eine matte Oberfläche und Verschleißfestigkeit benötigen, wie z. B. Luftfahrtinstrumente, optische Instrumente, Fotoausrüstung usw. Opaleszierendes Chrom wird hauptsächlich in verschiedenen Messgeräten verwendet.
5. Verzinnen
Im Vergleich zum Stahlsubstrat ist Zinn eine negativ polare Beschichtung, während es im Vergleich zum Kupfersubstrat eine Anodenbeschichtung darstellt. Die Verdünnungsschicht wird hauptsächlich als Schutzschicht aus dünnem Blech in der Dosenindustrie verwendet, und der größte Teil der Tempergusshaut besteht aus verzinntem Eisenblech. Ein weiterer wichtiger Einsatzbereich von Zinnbeschichtungen liegt in der Elektronik- und Energieindustrie.
6, Legierungsüberzug
In einer Lösung werden zwei oder mehr Metallionen gleichzeitig auf der Kathode ausgefällt, um einen gleichmäßigen, feinen Beschichtungsprozess zu bilden, der als Legierungsplattierung bezeichnet wird.
Die Legierungsgalvanisierung ist der Einzelmetallgalvanisierung hinsichtlich Kristalldichte, Porosität, Farbe, Härte, Korrosionsbeständigkeit, Verschleißfestigkeit, magnetischer Leitfähigkeit, Verschleißfestigkeit und Hochtemperaturbeständigkeit überlegen.
Es gibt mehr als 240 Arten von Galvanisierungslegierungen, aber weniger als 40 Arten werden tatsächlich in der Produktion verwendet. Es wird im Allgemeinen in drei Kategorien unterteilt: schützende Legierungsbeschichtung, dekorative Legierungsbeschichtung und funktionelle Legierungsbeschichtung .
Weit verbreitet in der Luftfahrt, Luft- und Raumfahrt, Navigation, Automobil, Bergbau, Militär, Instrumenten, Messgeräten, visueller Hardware, Geschirr, Musikinstrumenten und anderen Branchen.
Zusätzlich zu den oben genannten gibt es noch andere chemische Beschichtungen, Verbundbeschichtungen, Nichtmetallbeschichtungen, Vergoldungen, Silberbeschichtungen usw.
Die Oberfläche der durch CNC-Bearbeitung oder 3D-Druck bearbeiteten Artikel ist manchmal rau und die Oberflächenanforderungen an die Produkte sind hoch, sodass sie poliert werden müssen.
Unter Polieren versteht man den Einsatz mechanischer, chemischer oder elektrochemischer Maßnahmen zur Reduzierung der Oberflächenrauheit des Werkstücks, um eine helle, flache Oberflächenbearbeitungsmethode zu erhalten.
Polieren kann nicht die Maßhaltigkeit oder geometrische Genauigkeit des Werkstücks verbessern, sondern dient dem Zweck, eine glatte Oberfläche oder Spiegelglanz zu erhalten und manchmal auch, um Glanz zu beseitigen (Auslöschung).
Im Folgenden werden einige gängige Poliermethoden beschrieben:
01. Mechanisches Polieren
Das mechanische Polieren erfolgt durch Schneiden, plastische Verformung der Oberfläche des Materials, um die polierte konvexe und glatte Oberfläche zu polieren. Dabei werden im Allgemeinen Schleifsteinstreifen, Wollscheiben, Schleifpapier usw. verwendet. hauptsächlich manueller Betrieb , Oberflächenqualitätsanforderungen können zur superfeinen Poliermethode verwendet werden.
Unter Superfinish-Polieren versteht man die Verwendung spezieller Schleifwerkzeuge, bei denen die Polierflüssigkeit ein Schleifmittel enthält und fest auf die zu bearbeitende Oberfläche des Werkstücks gepresst wird, um eine Hochgeschwindigkeitsrotation zu ermöglichen. Dieses Verfahren wird häufig bei Formen für optische Linsen verwendet.
02. Chemisches Polieren
Beim chemischen Polieren werden die mikroskopisch kleinen hervorstehenden Teile der Materialoberfläche im chemischen Medium bevorzugt aufgelöst als die konkaven Teile, um eine glatte Oberfläche zu erhalten.
Der Hauptvorteil dieser Methode besteht darin, dass sie keine komplexe Ausrüstung erfordert, das Werkstück mit komplexer Form polieren kann und viele Werkstücke gleichzeitig mit hoher Effizienz polieren kann.
Das Kernproblem des chemischen Polierens ist die Aufbereitung der Polierflüssigkeit.
03. Elektrolytisches Polieren
Das Grundprinzip des elektrolytischen Polierens ist das gleiche wie das des chemischen Polierens, d. h. die Oberfläche wird geglättet, indem kleine hervorstehende Teile auf der Oberfläche des Materials selektiv aufgelöst werden.
Im Vergleich zum chemischen Polieren kann der Effekt der Kathodenreaktion eliminiert werden und der Effekt ist besser.
04. Ultraschallpolieren
Das Werkstück wird in die Schleifmittelsuspension gegeben und im Ultraschallfeld zusammengefügt, und das Schleifmittel wird auf der Werkstückoberfläche mithilfe der Schwingung der Ultraschallwelle geschliffen und poliert.
Die makroskopische Kraft der Ultraschallbearbeitung ist gering und verursacht keine Verformung des Werkstücks, aber die Herstellung und Installation von Werkzeugen ist schwieriger.
05. Flüssiges Polieren
Beim Flüssigkeitspolieren werden mit hoher Geschwindigkeit fließende Flüssigkeiten und die darin enthaltenen Schleifpartikel verwendet, um die Oberfläche des Werkstücks zu waschen und so den Polierzweck zu erreichen.
Gängige Methoden sind: Schleifstrahlbearbeitung, Flüssigkeitsstrahlbearbeitung, hydrodynamisches Schleifen Und so weiter. Hydrodynamisches Schleifen wird durch hydraulischen Druck angetrieben, damit das flüssige Medium, das die Schleifpartikel trägt, mit hoher Geschwindigkeit durch die Oberfläche des Werkstücks fließt.
Das Medium besteht hauptsächlich aus speziellen Verbindungen mit guter Fließfähigkeit bei niedrigem Druck und gemischt mit Schleifmitteln, bei denen es sich um Siliziumkarbidpulver handeln kann.
06. Magnetisches Schleifen und Polieren
Beim magnetischen Schleifen und Polieren wird magnetisches Schleifmittel unter Einwirkung eines Magnetfelds verwendet, um eine Schleifbürste zu bilden und das Werkstück zu schleifen.
Diese Methode bietet die Vorteile einer hohen Verarbeitungseffizienz, einer guten Qualität, einer einfachen Kontrolle der Verarbeitungsbedingungen und guter Arbeitsbedingungen.
Die oben genannten sind 6 gängige Polierverfahren.
HONSCN Precision ist seit 20 Jahren ein professioneller Hersteller von CNC-Bearbeitungen. Zusammenarbeit mit mehr als 1.000 Unternehmen, umfassende Technologieakkumulation, leitendes Technikerteam, herzlich willkommen, maßgeschneiderte Verarbeitung zu konsultieren! Kundendienst
„Die CNC-Bearbeitung hat oft viele Vorteile. Aus Sicht der Automobil-, Luft- und Raumfahrt- und Verbraucheranwendungen wird es häufig bei der Herstellung von Komponenten in diesen Bereichen eingesetzt. Und in gewisser Weise hat es ähnliche Eigenschaften wie Metall.“
Polyformaldehyd, kurz POM, ist ein faszinierendes Kunststoffharz, das in verschiedenen Industriebereichen weit verbreitet ist. Die Luft- und Raumfahrt-, Automobil- und Elektronikindustrie sind wichtige Abnehmer dieses Polymers. Durch die Verarbeitung von Polyformaldehyd kann insbesondere im Fertigungsbereich eine schnelle und effiziente Verarbeitung erreicht werden. Darüber hinaus profitieren Anwender von seiner hohen mechanischen Festigkeit, Steifigkeit, Bearbeitbarkeit und der Vielfalt der Sortenauswahl.
Dieser Artikel enthält die folgenden wichtigen Details der POM-CNC-Bearbeitung sowie ihre grundlegenden Eigenschaften in Bezug auf Funktionen, Anwendungen, Vorteile usw. Fangen wir an.
POM, ein Homopolymer, ist auch als Delrin bekannt. Es wird häufig als technischer Thermoplast zur Herstellung von Prototypen für den industriellen Einsatz eingesetzt. Es kommt normalerweise in zwei Formen vor: Copolymere oder Homopolymere. Von komplexen Prototypen bis hin zu flexiblen Maschinenteilen bringt es wirtschaftliche Vorteile für die Fertigung.
Produktdesigner können von seiner strukturellen Integrität, Farbvielfalt und Steifigkeitseigenschaften profitieren. Darüber hinaus eignet es sich aufgrund seiner Zuverlässigkeit und Widerstandsfähigkeit in feuchten Umgebungen für Anwendungen in den Bereichen Marine, Medizin und Luft- und Raumfahrt. POM hat normalerweise einen anderen Namen, z. Acetal (Acetal), Polyacetal (Polyacetal), Polyformaldehyd usw.
POM-Formaldehyd oder Polyacetal bieten beim Einsatz in der Zerspanung erhebliche Vorteile. Profitieren Sie von führenden Technologien wie der Präzisionsbearbeitung von POM oder der CNC-Bearbeitung; Zum Beispiel; Fräsen, Bohren, Stanzen und Stanzen. Darüber hinaus ist seine Vielseitigkeit in verschiedenen Güten für Zerspanungsexperten von großem Vorteil. Delrin ist auch mit fortschrittlichen Schneidtechnologien kompatibel; Beispiele hierfür sind Laserschneid- und Extrusionsverfahren.
Zu den Hauptmerkmalen der CNC-Bearbeitung gehören::
Die CNC-Bearbeitung von Kunststoffen kann mit verschiedenen Technologien eingesetzt werden. Zum Beispiel; CNC-Fräsen, CNC-Bohren, Drehen, Schleifen, Stanzen und Stanzen. Seine einfache Verarbeitung hat großen Einfluss auf seinen Einsatz in diesen Prozessen. Darüber hinaus hat es auch wegen seiner hohen Dehnbarkeit große Aufmerksamkeit erhalten. Lassen Sie uns nun die Methode besprechen, mit der Sie bei der POM-CNC-Bearbeitung die besten Ergebnisse erzielen.
Der Prozess beginnt mit computergestütztem Design und Programmierung, um Genauigkeit, Qualität und Optimierungsgrad zu verbessern. Nach der virtuellen Konfiguration werden die Anweisungen in folgender Form an die CNC-Maschine weitergeleitet: G-Code für weitere Verarbeitungsaussichten
Anschließend wird am Werkstückmaterial (POM) ein Schneidvorgang durchgeführt, um die optimalen Abmessungen und Maße zu erhalten. Es wird empfohlen, bei der Bearbeitung von Delrin mit hoher Geschwindigkeit Kühlmittel zu verwenden, um ineffektive Bearbeitungsvorgänge wie Spanansammlung oder Überhitzung zu verhindern.
Im Folgenden sind einige der üblicherweise zur Verarbeitung verwendeten Techniken aufgeführt stark Polyformaldehyd oder POM.
1.POM CNC-Fräsen
CNC-Fräsen wird häufig zur Bearbeitung von POM-Teilen eingesetzt. Werkzeuge mit scharfen Kanten sorgen für den besten Winkel und die beste Oberflächengüte. Daher ist es sinnvoll, für die Bearbeitung von Delrin einen Einzelnutfräser zu verwenden. Diese Fräser verhindern die Bildung von Spänen während der Bearbeitung.
2.POM CNC-Bohren
Für die Verarbeitung von Polyformaldehydharzen eignen sich am besten handelsübliche Spiral- und Zentrierbohrer. Diese Materialien verfügen über starke, geschärfte Kanten, die letztendlich reibungslose Fräsvorgänge auf Delrin ermöglichen. Die optimale Schnittgeschwindigkeit des gebohrten POM muss etwa 1500 U/min und der Lippentorsionswinkel betragen 118°.
3.POM CNC-Drehen
Der CNC-Drehvorgang von POM ähnelt dem Drehen von Messing. Die besten Ergebnisse können erzielt werden, wenn die Hochgeschwindigkeitsdrehgeschwindigkeit mit der mittleren Vorschubgeschwindigkeit übereinstimmt. Um Interferenzen und übermäßige Spanansammlungsprobleme zu vermeiden, muss bei Präzisionsdreharbeiten ein Spanbrecher verwendet werden.
4. Stanzen und Stanzen
Stanzen und Stanzen, beide Methoden werden für kleine und mittelgroße komplexe Teile bevorzugt. Im Betrieb können Risse im Blech zu großen Problemen bei unsachgemäßer Verarbeitung führen. Um dieses Problem zu beseitigen, ist es am besten, die Delrin-Platte vorzuwärmen und einen Hand- oder Hochstanzer zu verwenden.
Highlights: „Während der POM-CNC-Bearbeitung ist es wichtig, das POM festzuhalten oder das POM festzuhalten und ein Werkzeug aus hartem Stahl oder Hartmetall zu verwenden.“
Die beiden gängigsten Acetal-Typen sind für die CNC-Bearbeitung sehr nützlich; Polyformaldehydharz 150, Polyformaldehydharz; 100 (AF). Lassen Sie uns ihre Kompatibilität bewerten.
1. Delrin 150
Derlin 150 gehört zur Familie der Acetal-Homopolymere. Es weist eine hohe mechanische Festigkeit, Steifigkeit und Verschleißfestigkeit auf. Dank dieser einzigartigen Eigenschaften eignet es sich ideal für die CNC-Bearbeitung von Zahnrädern, Buchsen, Dichtungen sowie Innen- und Außenlackierungen im Automobilbereich. Darüber hinaus ist es aufgrund seiner Stabilität unter Hochtemperaturbedingungen ideal für Bewässerungs- und Förderteile geeignet.
2. Delrin 100(A)
Delrin 100 A ist mit Polytetrafluorethylen (PTFE) integriert, um die mechanische Stabilität und Viskosität zu verbessern. Es wird häufig in Getriebesystemen oder Komponenten verwendet, die geringe Reibungseigenschaften erfordern. Darüber hinaus weist es eine hohe Feuchtigkeits- und Chemikalienbeständigkeit auf. Darüber hinaus entfällt die Eigenschaft der Selbstschmierung (Öl oder Fett), wodurch es sich von anderen Delrin-Typen unterscheidet.
Bei der Bearbeitung spielt die gewünschte Oberflächenbeschaffenheit eine entscheidende Rolle. Bei der Oberflächenbehandlung kommen in der Regel zwei Möglichkeiten zum Einsatz: spanende Bearbeitung und Sandstrahlen. Hier ist eine kurze Einführung dazu;
Nach der Bearbeitung
Die CNC-Bearbeitung hinterlässt oft eine holprige Oberfläche oder Textur auf der Oberfläche des Acetalteils. Wenn raue oder strukturierte Teile benötigt werden, um die Reibungseigenschaften der Teile zu verbessern, wird die Oberflächenbehandlung bevorzugt. Der typische Rauheitsbereich, der durch maschinelle Bearbeitung erreicht werden kann, liegt bei etwa 32 bis 250 Mikrozoll (0,8 bis 6,3 Mikrometer).
Perle platzte
In den meisten Fällen hinterlassen Bearbeitungswerkzeuge Spuren auf Acetalteilen. Sandstrahlen wird oft verwendet, um Werkzeugspuren zu verhindern und den optischen Effekt von Delrin-bearbeiteten Teilen zu verbessern. Dabei werden Glasperlen oder feine Partikel unter hohem Druck auf die Oberfläche bearbeiteter Teile abgegeben. Darüber hinaus verbessert es die Haltbarkeit und verleiht Maschinenteilen aus Polyformaldehydharz ein wertvolles, glattes, mattes, ästhetisch ansprechendes und satiniertes Aussehen.
Es gibt andere Techniken; Zum Beispiel; Eloxieren, Polieren, Lackieren und Stempeln. Die meisten Konstrukteure bevorzugen jedoch aus wirtschaftlichen Gründen die beiden oben genannten Optionen.
Die Verwendung von Delrin für die CNC-Bearbeitung bietet jedoch enorme Vorteile. Außerdem hat es auch einige Nachteile. Hier sind Delrins Einschränkungen;
Adhäsion : Obwohl Acetal eine hervorragende chemische Beständigkeit aufweist, stellt es beim Verkleben mit starken Klebstoffen oft eine Herausforderung dar. Um dieses Problem zu lösen, müssen Designer möglicherweise nachbehandelte Oberflächenoptionen einsetzen, um optimale Ergebnisse zu erzielen.
Thermische Empfindlichkeit : Die thermische Empfindlichkeit ist ein wichtiges Thema für Designhersteller. Die Fähigkeit von Acetonalkoholen, hohen Temperaturen standzuhalten, ist von großer Bedeutung. Es eignet sich jedoch gut für Anwendungen, bei denen die mechanische Stabilität von entscheidender Bedeutung ist. Wenn es jedoch hohen Temperaturen ausgesetzt wird, kommt es in einigen Fällen zu Verformungs- oder Verzerrungsproblemen. Im Vergleich zu Nylon weist Nylon auch in rauen Umgebungen eine höhere Festigkeit und strukturelle Festigkeit auf.
Hohe Entflammbarkeit : Bei der Verarbeitung von Polyformaldehydharz besteht die Herausforderung der Entflammbarkeit. Es reagiert empfindlich auf Temperaturen über 121 Grad Celsius. Es wird empfohlen, immer ein Kühlmittel, beispielsweise Luftkühlmittel, zu verwenden, um die Temperatur während des Bearbeitungsvorgangs aufrechtzuerhalten. Um Entflammbarkeitsprobleme zu überwinden oder zu kontrollieren, ist es außerdem erforderlich, bei der Verarbeitung von POM einen Feuerlöscher der Klasse A zu verwenden.
Von der Automobilinnenausstattung bis hin zu Luft- und Raumfahrtkomponenten wird Drin in einer Vielzahl von Anwendungen eingesetzt. Werfen wir einen Blick auf einige seiner wichtigsten Anwendungen in der Fertigung.
Medizinische Industrie
POM ist ein wichtiger Werkstoff für medizinische Komponenten oder Geräte. Als technischer Thermoplast erfüllt es die strengen Qualitätsstandards der FDA oder ISO. Die Einsatzmöglichkeiten reichen von Gehäusen und Gehäusen bis hin zu komplexen Funktionsbauteilen; Zum Beispiel; Einwegspritzen, chirurgische Instrumente, Ventile, Inhalatoren, Prothesen und medizinische Implantate.
Automobilindustrie
Derlin liefert eine breite Palette von Automobilkomponenten an die Automobilindustrie. Aufgrund seiner hohen mechanischen Festigkeit, geringen Reibung und Verschleißfestigkeit können Ingenieure daraus wichtige Auto-, Motorrad- und Elektrofahrzeugteile herstellen. Einige gängige Beispiele sind: Gelenkgehäuse, Schließsysteme und Kraftstofftransmittereinheiten.
Verbrauchergeräte
Wenn es um praktische Anwendungen geht, bietet die Verarbeitung von Polyformaldehyd mehrere wesentliche Vorteile. Fertigungsexperten stellen daraus Reißverschlüsse, Kochutensilien, Waschmaschinen und Clips her.
Teile für Industriemaschinen
Die große Festigkeit von Derlin ermöglicht den Einsatz in der industriellen Teilefertigung. Aufgrund seiner Verschleißfestigkeit und geringen Reibungseigenschaften eignet es sich ideal für Komponenten wie Federn, Lüfterräder, Zahnräder, Gehäuse, Abstreifer und Walzen.
Als Branchenpionier ist Honscn immer an der Spitze der Marktentwicklungen. Wir wissen, dass wir im harten Wettbewerb auf dem Markt nur durch ständige Weiterentwicklung unzerstörbare Wettbewerbsfähigkeit schaffen können. Deshalb halten wir an technologischer Innovation fest und integrieren wissenschaftliches Management in jede Produktionsverbindung, um sicherzustellen, dass jeder Schritt korrekt ist. Wir konzentrieren uns nicht nur auf den Puls des heimischen Marktes, sondern auch im Einklang mit internationalen Standards, mit einer globalen Perspektive, um den Branchentrend zu untersuchen und den Puls der Times zu erfassen. Mit einem offenen Geist die Welt umarmen, mit exzellenter Qualität die Zukunft gewinnen!
Bitte kontaktieren Sie uns, um Ihre Projektanforderungen zu besprechen!
Kontakt: Ada Li
Tel:86 17722440307
WhatsApp: +86 17722440307
Email: Ada@honscn.com
Hinzufügen: 4F, Nr. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, China