obróbka cnc jest ważnym produktem Honscn Co., Ltd. Jest to innowacyjne rozwiązanie projektowe opracowane dzięki wspólnym wysiłkom silnego zespołu badawczo-rozwojowego i profesjonalnego zespołu projektowego w odpowiedzi na wymagania międzynarodowych klientów dotyczące niskich kosztów i wysokiej wydajności. Jest również wytwarzany przy użyciu innowacyjnej techniki produkcji, która zapewnia stabilną jakość produktu.
HONSCN markowe produkty wytwarzane są zgodnie z wytycznymi „Najpierw jakość”, które zyskały pewną reputację na rynku światowym. Praktyczność, unikalny projekt i surowe standardy kontroli jakości pomogły w uzyskaniu stałego napływu nowych klientów. Co więcej, oferowane są w przystępnych cenach przy zachowaniu efektywności kosztowej, dzięki czemu większość klientów jest skłonna nawiązać głęboką współpracę.
Uważamy, że biznes utrzymuje obsługa klienta. Dokładamy wszelkich starań, aby ulepszać nasze usługi. Na przykład staramy się zmniejszyć MOQ, aby więcej klientów mogło z nami współpracować. Oczekuje się, że wszystko to pomoże wprowadzić na rynek produkcję maszyn CNC.
1. Komponenty o wysokiej precyzji: Obróbka CNC oferuje możliwość tworzenia małych, precyzyjnych komponentów stanowiących integralną część funkcjonowania elektroniki 3C, takich jak czujniki, mikrokontrolery i małe części mechaniczne.
2. Niestandardowe modyfikacje: Do celów naprawy lub modyfikacji obróbka CNC może wyprodukować części zamienne lub niestandardowe modyfikacje starszych lub wycofanych z użytku urządzeń elektronicznych, które mogą nie mieć łatwo dostępnych części.
3. Jakość i spójność: Obróbka CNC zapewnia wysoką jakość produkcji i spójność komponentów elektronicznych, spełniając rygorystyczne tolerancje i specyfikacje wymagane przez branżę 3C.
4.. Produkcja masowa: Po sfinalizowaniu projektu obróbkę CNC można zastosować do masowej produkcji niestandardowych komponentów w branży elektroniki 3C, zapewniając, że każdy element spełnia dokładne specyfikacje.
Ogólnie rzecz biorąc, obróbka CNC na zamówienie odgrywa kluczową rolę w branży elektroniki 3C, umożliwiając tworzenie precyzyjnych, niestandardowych i wysokiej jakości komponentów niezbędnych do nowoczesnych urządzeń elektronicznych. W przypadku niestandardowych usług produkcji CNC wybierz nas, a my zapewnimy Ci najlepszą jakość usług i najbardziej konkurencyjną cenę. Promujmy wspólnie innowacyjność i rozwój 3C Elektronika Przemysł wytwórczy!
W dziedzinie obróbki skrawaniem, po metodach procesu obróbki CNC i podziale procesów, główną treścią trasy procesu jest racjonalne uporządkowanie tych metod obróbki i kolejności przetwarzania. Ogólnie rzecz biorąc, obróbka CNC części mechanicznych obejmuje cięcie, obróbka cieplna oraz procesy pomocnicze takie jak obróbka powierzchni, czyszczenie i kontrola. Kolejność tych procesów wpływa bezpośrednio na jakość, wydajność produkcji i koszt części. Dlatego przy projektowaniu tras obróbki CNC należy rozsądnie ustalić kolejność cięcia, obróbki cieplnej i procesów pomocniczych oraz rozwiązać problem połączenia między nimi.
Oprócz podstawowych kroków wymienionych powyżej, przy opracowywaniu trasy obróbki CNC należy wziąć pod uwagę takie czynniki, jak wybór materiału, projekt osprzętu i wybór sprzętu. Wybór materiału jest bezpośrednio powiązany z końcową wydajnością części, różne materiały mają różne wymagania dotyczące parametrów cięcia; Konstrukcja osprzętu będzie miała wpływ na stabilność i dokładność części w procesie przetwarzania; Dobór sprzętu musi uwzględniać rodzaj obrabiarki odpowiedniej do jej potrzeb produkcyjnych, zgodnie z charakterystyką produktu.
1, metodę przetwarzania precyzyjnych części maszyn należy określić zgodnie z charakterystyką powierzchni. Na podstawie znajomości charakterystyki różnych metod przetwarzania, opanowania ekonomii przetwarzania i chropowatości powierzchni wybierana jest metoda, która może zapewnić jakość przetwarzania, wydajność produkcji i oszczędność.
2, wybierz odpowiednie odniesienie do pozycjonowania rysunku, zgodnie z zasadą surowego i dokładnego doboru odniesień, aby rozsądnie określić odniesienie do pozycjonowania każdego procesu.
3 , Opracowując przebieg procesu obróbki części, należy na podstawie analizy części podzielić etapy zgrubne, półdokładne i wykańczające części, oraz określić stopień koncentracji i rozproszenia procesu oraz rozsądnie ułożyć kolejność obróbki powierzchni. W przypadku skomplikowanych części można najpierw rozważyć kilka schematów, a po porównaniu i analizie można wybrać najbardziej rozsądny schemat przetwarzania.
4, określić naddatek na przetwarzanie oraz wielkość procesu i tolerancję każdego procesu.
5, wybierz obrabiarki i pracowników, klipsy, ilości, narzędzia skrawające. Dobór sprzętu mechanicznego powinien nie tylko zapewniać jakość obróbki, ale także być ekonomiczny i rozsądny. W warunkach produkcji masowej należy z reguły stosować zwykłe obrabiarki i specjalne przyrządy montażowe.
6, Określ wymagania techniczne i metody kontroli każdego głównego procesu. O określeniu wielkości cięcia i limitu czasu każdego procesu decyduje zwykle operator w przypadku pojedynczego zakładu produkcyjnego o małych partiach. Generalnie nie jest to określone w karcie procesu obróbki. Jednak w zakładach o produkcji średnioseryjnej i masowej, aby zapewnić racjonalność produkcji i równowagę rytmiczną, wymagane jest określenie wielkości cięcia i nie wolno jej dowolnie zmieniać.
Najpierw szorstko, potem dobrze
Dokładność obróbki jest stopniowo poprawiana zgodnie z kolejnością toczenia zgrubnego - toczenia półdokładnego - toczenia dokładnego. Tokarka zgrubna może w krótkim czasie usunąć większość naddatku na obróbkę powierzchni przedmiotu obrabianego, zwiększając w ten sposób szybkość usuwania metalu i spełniając wymóg jednorodności naddatku. Jeśli pozostała ilość po toczeniu zgrubnym nie spełnia wymagań wykończeniowych, konieczne jest zorganizowanie samochodu półwykańczającego do wykańczania. Dobry samochód musi upewnić się, że kontur części jest wycięty zgodnie z rozmiarem rysunku, aby zapewnić dokładność przetwarzania.
Najpierw podejdź, a potem daleko
W normalnych okolicznościach należy najpierw obrobić części znajdujące się blisko narzędzia, a następnie części znajdujące się daleko od narzędzia, aby skrócić odległość przemieszczania się narzędzia i skrócić czas pustego przejazdu. W procesie toczenia korzystne jest utrzymanie sztywności półfabrykatu lub półproduktu oraz poprawa warunków jego skrawania.
Zasada przecięcia wewnętrznego i zewnętrznego
W przypadku części, które mają do obróbki zarówno powierzchnię wewnętrzną (wnękę wewnętrzną), jak i powierzchnię zewnętrzną, ustalając kolejność obróbki, należy najpierw poddać obróbce zgrubnej powierzchnię wewnętrzną i zewnętrzną, a następnie wykończyć powierzchnie wewnętrzną i zewnętrzną. Nie może stanowić części powierzchni części (powierzchni zewnętrznej lub powierzchni wewnętrznej) po obróbce, a następnie obróbce innych powierzchni (powierzchni wewnętrznej lub powierzchni zewnętrznej).
Pierwsza zasada podstawowa
Priorytetowo należy traktować powierzchnię używaną jako odniesienie do wykończenia. Dzieje się tak dlatego, że im dokładniejsza powierzchnia odniesienia pozycjonowania, tym mniejszy błąd mocowania. Na przykład podczas obróbki części wału zwykle najpierw obrabiany jest otwór środkowy, a następnie powierzchnia zewnętrzna i czołowa są obrabiane z otworem środkowym jako podstawą precyzji.
Zasada pierwsza i druga
W pierwszej kolejności należy obrobić główną powierzchnię roboczą i powierzchnię montażową części, aby wcześnie wykryć nowoczesne defekty na głównej powierzchni półwyrobu. Powierzchnię wtórną można przeplatać, w pewnym stopniu nakładać na główną powierzchnię obrobioną, przed ostatecznym wykończeniem.
Zasada twarzy przed dziurą
Rozmiar zarysu płaskiego części pudełka i wspornika jest duży, a płaszczyzna jest zazwyczaj przetwarzana najpierw, a następnie przetwarzany jest otwór i inne rozmiary. Taki układ kolejności obróbki, z jednej strony z pozycjonowaniem obrabianej płaszczyzny, jest stabilny i niezawodny; Z drugiej strony łatwo jest obrobić otwór na obrobionej płaszczyźnie i może poprawić dokładność obróbki otworu, szczególnie podczas wiercenia, oś otworu nie jest łatwa do odchylenia.
Opracowując proces obróbki części, należy wybrać odpowiednią metodę obróbki, wyposażenie obrabiarki, zaciskowe narzędzia pomiarowe, półfabrykat i wymagania techniczne dla pracowników zgodnie z rodzajem produkcji części.
Mówi się, że w karierze obrabiacza obrabiarek, niezależnie od tego, jak bardzo jest ostrożny, nie da się uniknąć wypadku spowodowanego kolizją noża. Nie ma to nic wspólnego z tym, czy pracownik jest poważny, praktyczny i stabilny, tak jak człowiek nie może uniknąć błędów w procesie wzrostu, tak w procesie wzrostu pracownika obrabiarki nóż wydaje się przeszkodą nie do ominięcia .
Narzędzie do uderzania , odnosi się do narzędzia w trakcie przemieszczania się wraz z przedmiotem obrabianym, uchwytem lub konikiem, przypadkowy wypadek z maszyną, jest najbardziej prawdopodobnym wypadkiem dla nowicjuszy w obsłudze tokarki CNC.
Zderzenie noża spowoduje złom przedmiotu obrabianego, uszkodzenie narzędzia, poważne uszkodzenie dokładności obrabiarki, zniszczenie części maszyny, a nawet zagrozi bezpieczeństwu osobistemu personelu obsługującego obrabiarkę.
Występowanie wypadków związanych z kolizją noża spowodowane jest głównie błędami programistycznymi w procesie programowania lub błędami operacyjnymi pracowników w łączu przetwarzającym.
Dla pracowników ogólne łącze programistyczne nie jest łatwe do popełnienia błędów, a wiele osób ma wypadki zderzeniowe z nożem, często spowodowane błędami w procesie obsługi obrabiarki.
Ponieważ centrum obróbcze CNC jest blokowane programowo, podczas przetwarzania symulacyjnego po naciśnięciu przycisku operacji automatycznej sprawdzenie, czy maszyna jest zablokowana w interfejsie symulacji, nie jest intuicyjne.
W symulacji często nie ma żadnego narzędzia, a jeśli obrabiarka nie jest zablokowana do pracy, łatwo jest uderzyć nożem.
Dlatego przed obróbką symulacyjną należy udać się do uruchomionego interfejsu, aby potwierdzić, czy maszyna jest zablokowana.
1. Zapomnij o wyłączeniu pustego przełącznika podczas przetwarzania.
Ponieważ w symulacji programu, aby zaoszczędzić czas, często włącza się przełącznik pustej pracy.
Pusta praca oznacza, że wszystkie ruchome osie maszyny pracują z prędkością G00.
Jeśli w czasie obróbki przełącznik operacyjny nie zostanie wyłączony, obrabiarka ignoruje zadaną prędkość posuwu i pracuje z prędkością G00, co skutkuje wypadkami noży i obrabiarek.
2. Po uruchomieniu symulacji na pusto nie jest zwracany żaden punkt odniesienia.
W programie weryfikacji, gdy maszyna jest zablokowana w bezruchu, a narzędzie względem obróbki przedmiotu w operacji symulacyjnej (zmiana współrzędnych bezwzględnych i współrzędnych względnych), wówczas współrzędne nie pokrywają się z położeniem rzeczywistym, należy zastosować metodę zwrotu odniesienia punktu, aby upewnić się, że mechaniczne współrzędne zerowe są zgodne ze współrzędnymi bezwzględnymi i względnymi.
Jeżeli operacja obróbki zostanie przeprowadzona bez znalezienia problemu po procedurze sprawdzającej, spowoduje to kolizję narzędzia.
3. Kierunek zwolnienia przekroczenia jest nieprawidłowy.
Gdy maszyna się przejedzie, należy nacisnąć i przytrzymać przycisk zwalniający przekroczenie i ręcznie lub ręcznie ruszyć w przeciwnym kierunku, czyli da się to wyeliminować.
Jeżeli jednak kierunek podnoszenia zostanie odwrócony, spowoduje to uszkodzenie obrabiarki.
Ponieważ po naciśnięciu spustu przekroczenia zakresu zabezpieczenie obrabiarki przed przekroczeniem zakresu nie zadziała, a przełącznik skoku zabezpieczenia przed przekroczeniem zakresu znajduje się już na końcu skoku.
W tym momencie można spowodować dalszy ruch stołu warsztatowego w kierunku nadmiaru i ostatecznie wyciągnąć śrubę pociągową, powodując uszkodzenie obrabiarki.
4. Pozycja kursora w określonym wierszu jest nieprawidłowa.
Po uruchomieniu określonej linii jest ona zwykle wykonywana w dół od pozycji kursora.
W przypadku tokarki konieczne jest wywołanie wartości korekcji użytego narzędzia, jeśli narzędzie nie zostanie wywołane, narzędzie obsługujące segment programu może nie być pożądanym narzędziem i jest bardzo prawdopodobne, że spowoduje wypadek kolizyjny z powodu różne narzędzia.
Oczywiście w centrum obróbczym frezarka CNC musi najpierw wywołać układ współrzędnych taki jak G54 i wartość kompensacji długości noża.
Ponieważ wartość kompensacji długości każdego noża nie jest taka sama, istnieje możliwość spowodowania kolizji noża, jeśli nie zostanie ona wywołana.
Jako obrabiarka o wysokiej precyzji, antykolizyjność jest bardzo potrzebna, wymagając od operatora wyrobienia nawyku zachowania ostrożności i ostrożności, obsługi obrabiarki zgodnie z właściwą metodą i ograniczenia występowania kolizji obrabiarki.
Wraz z rozwojem technologii podczas przetwarzania pojawiły się zaawansowane technologie, takie jak wykrywanie uszkodzeń narzędzi, wykrywanie uderzeń obrabiarek i przetwarzanie adaptacyjne obrabiarek, które mogą lepiej chronić obrabiarki CNC.
Jest ku temu 9 powodów:
(1) Błąd programowania
Układ procesu jest nieprawidłowy, relacja między podmiotami realizującymi proces nie jest dokładnie przemyślana, a ustawienie parametrów jest nieprawidłowe.
Przykład :
A. Współrzędna jest ustawiona na zero u podstawy, ale w praktyce na górze wynosi 0;
B. Wysokość bezpieczna jest zbyt niska, co powoduje, że narzędzie nie może całkowicie podnieść przedmiotu obrabianego;
C. Drugi margines otwarcia jest mniejszy niż w przypadku poprzedniego noża;
D. Po napisaniu programu należy przeanalizować i sprawdzić ścieżkę programu;
(2) Błąd pojedynczych uwag programu
Przykład:
A. Liczba jednostronnych dotknięć jest zapisana na czterech stronach;
B. Odległość mocowania imadła lub odległość wystającego przedmiotu jest nieprawidłowa;
C. Długość przedłużenia narzędzia jest nieznana lub nieprawidłowa, co powoduje kolizję noża;
D. Karta procedury powinna być jak najbardziej szczegółowa;
E. W przypadku zmiany procedury należy przyjąć zasadę „nowe za stare”.: Zniszcz stary program.
(3) Błąd pomiaru narzędzia
Przykład:
A. Pasek narzędzi nie jest uwzględniany przy wprowadzaniu danych narzędzi;
B. Narzędzie jest za krótkie;
C. Pomiar narzędzi powinien wykorzystywać metody naukowe, w miarę możliwości przy użyciu dokładniejszych przyrządów;
D. Długość narzędzia powinna być o 2-5 mm większa niż rzeczywista głębokość.
(4) Błąd transmisji programu
Błąd wywołania numeru programu lub modyfikacja programu, ale nadal korzystaj ze starego przetwarzania programu; Podmiot przetwarzający witrynę musi sprawdzić szczegółowe dane programu przed przetworzeniem; Na przykład godzina i data, w której program został napisany i symulowany za pomocą programu Bear.
(5) Zły dobór noża
(6) półfabrykat przekracza oczekiwania, a półfabrykat jest za duży i nie odpowiada ślepemu zadanemu przez program
(7) Sam materiał przedmiotu obrabianego ma wady lub wysoką twardość
(8) współczynniki mocowania, interferencja podkładki i procedura nie są brane pod uwagę
(9) Awaria obrabiarki, nagła awaria zasilania, uderzenie pioruna spowodowało kolizję narzędzia itp
Honscn ma ponad dziesięcioletnie doświadczenie w obróbce cnc, specjalizując się w obróbce cnc, obróbce części mechanicznych sprzętu, obróbce części urządzeń automatyki. Obróbka części robotów, obróbka części UAV, obróbka części rowerowych, obróbka części medycznych itp. Jest jednym z wysokiej jakości dostawców obróbki CNC. Obecnie firma posiada ponad 20 zestawów centrów obróbczych cnc, szlifierek, frezarek, wysokiej jakości, precyzyjnego sprzętu testującego, aby zapewnić klientom precyzyjne i wysokiej jakości usługi obróbki części zamiennych cnc.
Wiercenie sterowane numerycznie to metoda wiercenia wykorzystująca technologię sterowania cyfrowego. Charakteryzuje się wysoką precyzją, wysoką wydajnością i wysoką powtarzalnością. Dzięki wstępnemu programowaniu w celu ustawienia pozycji wiercenia, głębokości, prędkości i innych parametrów, obrabiarki CNC mogą automatycznie wykonywać złożone operacje wiercenia.
Wiertarka CNC składa się zwykle z układu sterowania, układu napędowego, korpusu maszyny i urządzenia pomocniczego. Sercem systemu kontroli jest przetwarzanie i wysyłanie instrukcji; Układ napędowy realizuje ruch każdej osi obrabiarki; Korpus maszyny zapewnia platformę wiertniczą i wsparcie konstrukcyjne; Urządzenia pomocnicze obejmują układ chłodzenia, system usuwania wiórów itp., Aby zapewnić płynność procesu. W przemyśle wytwórczym wiercenie CNC jest szeroko stosowane w lotnictwie, motoryzacji, produkcji form i innych dziedzinach, które mogą zaspokoić zapotrzebowanie na precyzyjne wiercenie części oraz poprawić wydajność produkcji i jakość produktu.
Zasada przetwarzania technologii wiercenia CNC obejmuje głównie następujące kroki:
1. Programowanie: Zaprojektowany wzór wiercenia i parametry są konwertowane do programu przetwarzania identyfikowalnego przez obrabiarkę CNC za pomocą klawiatury na panelu operacyjnym lub maszynie wejściowej w celu przesłania informacji cyfrowych do urządzenia CNC.
2. Przetwarzanie sygnałów: Urządzenie CNC wykonuje szereg operacji na sygnale wejściowym, wysyła serwomechanizm podawania i inne polecenia wykonawcze oraz wysyła sygnały poleceń S, M, T i inne do programowalnego sterownika.
3. Wykonanie obrabiarki: Po tym, jak sterownik programowalny odbierze sygnały poleceń S, M, T i inne, steruje korpusem obrabiarki w celu natychmiastowego wykonania tych poleceń i przekazuje informację zwrotną o wykonaniu korpusu obrabiarki do urządzenia CNC w czasie rzeczywistym.
4. Kontrola przemieszczenia: Po otrzymaniu przez serwomechanizm polecenia wykonania posuwu osie współrzędnych głównego korpusu obrabiarki napędowej (mechanizmu posuwu) są dokładnie przesuwane, ściśle według wymagań instrukcji, a obróbka przedmiotu obrabianego zostaje automatycznie zakończona.
5. Informacje zwrotne w czasie rzeczywistym: W procesie przemieszczenia każdej osi urządzenie wykrywające szybko przekaże zmierzoną wartość przemieszczenia do numerycznego urządzenia sterującego, aby porównać ją z wartością zadaną, a następnie bardzo szybko wyda instrukcje kompensacji do serwomechanizmu prędkość, aż zmierzona wartość będzie zgodna z wartością zadaną.
6. Ochrona przed przekroczeniem zasięgu: w procesie przemieszczenia każdej osi, jeśli wystąpi zjawisko „przekroczenia zakresu”, urządzenie ograniczające może wysłać pewne sygnały do sterownika programowalnego lub bezpośrednio do urządzenia sterującego numerycznie, układ sterowania numerycznego z jednej strony wysyła alarm z drugiej strony wysyła sygnał zatrzymania do układu serwa podawania w celu wdrożenia zabezpieczenia przed przekroczeniem zakresu.
Technologia wiercenia CNC ma następujące właściwości przetwarzania:
1. Wysoki stopień automatyzacji: cały proces przetwarzania sterowany jest przez przygotowany wcześniej program, co ogranicza konieczność ręcznej interwencji i poprawia efektywność produkcji.
2. Wysoka celność: Może realizować precyzyjne wiercenie, dokładne pozycjonowanie oraz gwarantowaną dokładność rozmiaru i kształtu otworu.
3. Dobra konsystencja przetwarzania: dopóki procedura pozostaje niezmieniona, jakość produktu jest stabilna, a powtarzalność wysoka.
4, zdolność przetwarzania złożonych kształtów: może przetwarzać różnorodne złożone kształty i struktury przedmiotu obrabianego, aby spełnić różnorodne potrzeby.
5. Szeroki zakres adaptacji: nadaje się do wiercenia różnych materiałów, w tym metalu, tworzyw sztucznych, materiałów kompozytowych itp.
6. Wysoka wydajność produkcji: szybki, automatyczny system wymiany narzędzi i ciągła zdolność przetwarzania, znacznie skracająca czas przetwarzania.
7. Łatwa regulacja i modyfikacja: parametry i proces wiercenia można regulować, modyfikując program, a elastyczność jest duża.
8. Można zrealizować połączenie wieloosiowe: wiercenie można wykonywać w wielu kierunkach jednocześnie, co poprawia złożoność i dokładność obróbki.
9. Inteligentne monitorowanie: Może monitorować w czasie rzeczywistym różne parametry procesu przetwarzania, takie jak siła skrawania, temperatura itp., znajdować problemy na czas i korygować je.
10. Dobra interakcja człowiek-komputer: operator może łatwo obsługiwać i monitorować za pośrednictwem interfejsu operacyjnego.
Dokładność obróbki technologii wiercenia CNC jest zapewniona głównie poprzez następujące aspekty:
1. Dokładność obrabiarki: dobór wysokoprecyzyjnych wiertarek CNC z uwzględnieniem projektu konstrukcyjnego obrabiarki, procesu produkcyjnego i dokładności montażu. Wysokiej jakości szyny prowadzące, śruby pociągowe i inne elementy przekładni mogą zmniejszyć błędy ruchu.
2. System sterowania: Zaawansowany system CNC może dokładnie kontrolować trajektorię ruchu i prędkość obrabiarki, aby osiągnąć precyzyjne operacje pozycjonowania i interpolacji, aby zapewnić dokładność pozycji i głębokości wiercenia.
3. Wybór i montaż narzędzi: Wybierz odpowiednie wiertło i zadbaj o dokładność jego montażu. Jakość, geometria i zużycie narzędzia wpływają na dokładność obróbki.
4. Chłodzenie i smarowanie: Dobry układ chłodzenia i smarowania może zmniejszyć wytwarzanie ciepła skrawania, zmniejszyć zużycie narzędzi, utrzymać stabilność procesu obróbki i pomóc poprawić dokładność.
5. Dokładność programowania: Dokładne programowanie jest podstawą zapewnienia dokładności obróbki. Rozsądne ustawienie współrzędnych wiercenia, prędkości posuwu, głębokości skrawania i innych parametrów w celu uniknięcia błędów programowania.
6. Pomiar i kompensacja: Dzięki sprzętowi pomiarowemu wykrywającemu przedmiot obrabiany po obróbce, wyniki pomiarów są przekazywane z powrotem do układu sterowania numerycznego w celu kompensacji błędów, co pozwala jeszcze bardziej poprawić dokładność przetwarzania.
7. Pozycjonowanie opraw: aby zapewnić dokładne i niezawodne pozycjonowanie przedmiotu obrabianego na obrabiarce, zmniejszyć wpływ błędu mocowania na dokładność obróbki.
8. Środowisko przetwarzania: stabilna temperatura, wilgotność i czyste środowisko pracy pomagają utrzymać dokładność i stabilność obrabiarki, aby zapewnić dokładność obróbki.
9. Regularna konserwacja: Regularna konserwacja obrabiarki, w tym sprawdzanie i regulacja dokładności obrabiarki, wymiana zużytych części itp., aby zapewnić, że obrabiarka jest zawsze w dobrym stanie.
W technologii wiercenia CNC jakość powierzchni wiercenia można poprawić następującymi metodami:
1. Wybierz odpowiednie narzędzie: W zależności od materiału do obróbki i wymagań dotyczących wiercenia wybieraj wiertła wysokiej jakości, ostre i zoptymalizowane geometrycznie. Na przykład użycie powlekanych wierteł może zmniejszyć tarcie i zużycie oraz poprawić jakość powierzchni.
2. Optymalizuj parametry cięcia: rozsądnie ustaw prędkość skrawania, posuw i głębokość skrawania. Większa prędkość skrawania i odpowiedni posuw zazwyczaj pozwalają uzyskać lepsze wykończenie powierzchni, należy jednak zachować ostrożność, aby nie dopuścić do nadmiernego zużycia narzędzia lub niestabilności obróbki na skutek niewłaściwych parametrów.
3. Pełne chłodzenie i smarowanie: Zastosowanie skutecznego smaru chłodzącego pozwala w odpowiednim czasie usunąć ciepło skrawania, obniżyć temperaturę skrawania, zmniejszyć zużycie narzędzi i powstawanie guzów wiórowych, poprawiając w ten sposób jakość powierzchni.
4. Kontroluj dodatek przetwórczy: przed wierceniem należy rozsądnie zorganizować proces wstępnej obróbki, kontrolować naddatek części wiertniczej i unikać nadmiernego lub nierównego wpływu na jakość powierzchni.
5. Popraw dokładność i stabilność obrabiarki: regularnie konserwuj i kalibruj obrabiarkę, aby zapewnić dokładność ruchu i sztywność obrabiarki oraz zmniejszyć wpływ wibracji i błędów na jakość powierzchni.
6. Zoptymalizuj ścieżkę wiercenia: zastosuj rozsądne metody podawania i wycofywania, aby uniknąć zadziorów i zadrapań przy otworze otworu.
7. Kontroluj środowisko przetwarzania: utrzymuj środowisko przetwarzania w czystości, stałą temperaturę i wilgotność, redukuj wpływ czynników zewnętrznych na dokładność obróbki i jakość powierzchni.
8. Korzystanie z wiercenia krok po kroku: w przypadku otworów o większych średnicach lub wymagających dużej precyzji można zastosować metodę wiercenia etapowego, aby stopniowo zmniejszać otwór i poprawiać jakość powierzchni.
9. Obróbka ścian otworów: Po wierceniu, jeśli to konieczne, można zastosować polerowanie, szlifowanie i inne późniejsze metody obróbki w celu dalszej poprawy jakości powierzchni otworu.
Technologia wiercenia CNC jest szeroko stosowana w następujących dziedzinach:
1. Pole lotnicze: Komponentom używanym do produkcji samolotów i statków kosmicznych, takim jak konstrukcje skrzydeł, elementy silników itp., stawiane są wysokie wymagania w zakresie precyzji i jakości.
2. Branża produkcji samochodów: wiercenie i obróbka bloku cylindrów silnika samochodowego, obudowy skrzyni biegów, części podwozia itp., aby zapewnić dokładną koordynację części.
3. Produkcja sprzętu elektronicznego: Odgrywa ważną rolę w wierceniu płytek drukowanych (PCB), aby zapewnić dokładność połączeń obwodów.
4. Produkcja form: precyzyjne wiercenie dla wszystkich rodzajów form, takich jak formy wtryskowe, matryce do tłoczenia itp., aby spełnić złożoną strukturę i wymagania dotyczące wysokiej precyzji formy.
5. Pole wyrobów medycznych: części precyzyjne do produkcji wyrobów medycznych, takie jak narzędzia chirurgiczne, części protetyczne itp.
6. Przemysł energetyczny: w tym sprzęt do wytwarzania energii wiatrowej, sprzęt petrochemiczny i inne części wiertnicze.
7. Produkcja morska: wiercenie i obróbka części silników okrętowych, części konstrukcyjnych kadłuba itp.
8. Przemysł militarny: produkcja części do broni i sprzętu w celu zapewnienia ich wydajności i niezawodności.
Krótko mówiąc, technologia wiercenia CNC zajmuje niezastąpioną pozycję we wszystkich dziedzinach współczesnego przemysłu ze względu na wysoką precyzję, wysoką wydajność i elastyczność.
Trend rozwoju technologii wiercenia CNC odzwierciedla się głównie w następujących aspektach:
1. Większa dokładność i szybkość: Wraz z ciągłym doskonaleniem wymagań dotyczących jakości produktów i wydajności produkcji w przemyśle wytwórczym, technologia wiercenia CNC będzie rozwijać się w kierunku wyższej dokładności pozycjonowania, dokładności powtarzalności i większej prędkości wiercenia.
2. Inteligencja i automatyzacja: integracja sztucznej inteligencji, uczenia maszynowego i innych technologii w celu osiągnięcia automatycznego programowania, automatycznej optymalizacji parametrów przetwarzania, automatycznej diagnostyki usterek i funkcji automatycznej kompensacji błędów, dalszego ograniczenia ręcznej interwencji, poprawy wydajności przetwarzania i stabilności jakości.
3. Połączenie wieloosiowe i obróbka kompozytowa: Rozwój technologii wiercenia wieloosiowego może zakończyć wiercenie skomplikowanych kształtów i kątów w jednym mocowaniu. Jednocześnie w przypadku innych procesów przetwarzania, takich jak frezowanie, szlifowanie itp., Aby osiągnąć energię wielu maszyn, poprawić wydajność i dokładność przetwarzania.
4. Zielona ochrona środowiska: Skoncentruj się na oszczędzaniu i ograniczaniu zużycia energii, stosując wydajniejsze układy napędowe i energooszczędne technologie w celu zmniejszenia zużycia energii. Jednocześnie zoptymalizowano wykorzystanie i obróbkę chłodziwa, aby zmniejszyć wpływ na środowisko.
5. Miniaturyzacja i wielkoskalowość: z jednej strony spełnia wymagania dotyczące wysokiej precyzji i stabilności wiercenia mikroczęści; Z drugiej strony może poradzić sobie z wierceniem na dużą skalę dużych części konstrukcyjnych, takich jak statki i mosty.
6. Sieć i zdalne sterowanie: Poprzez sieć można uzyskać wzajemne połączenie sprzętu, zdalne monitorowanie, diagnostykę i konserwację, poprawić wydajność i wygodę zarządzania produkcją.
7. Nowe możliwości dostosowania materiału: może dostosować się do nowych materiałów, takich jak nadstopy, materiały kompozytowe i inne procesy wiercenia, opracować odpowiednie narzędzia i procesy.
8. Optymalizacja interakcji człowiek-komputer: bardziej przyjazny i wygodny interfejs interakcji człowiek-komputer ułatwia operatorom programowanie, obsługę i monitorowanie.
Jako ważna metoda przetwarzania w nowoczesnym przemyśle produkcyjnym, technologia wiercenia CNC ma wiele zalet i szerokie obszary zastosowań. Zasada obróbki zapewnia wysoką precyzję wiercenia poprzez programowanie, przetwarzanie sygnału, wykonanie obrabiarki i inne etapy. Pod względem właściwości ma zalety wysokiego stopnia automatyzacji, wysokiej precyzji, dobrej spójności i szerokiego zakresu adaptacji. Aby zapewnić dokładność obróbki, zależy to od wielu czynników, takich jak dokładność obrabiarki, system sterowania i dobór narzędzi. Jakość powierzchni wiercenia można poprawić poprzez dobór narzędzi skrawających i optymalizację parametrów skrawania. W przyszłości trend rozwojowy technologii wiercenia CNC będzie zmierzał w kierunku większej precyzji i szybkości, inteligencji i automatyzacji, wieloosiowego połączenia i obróbki kompozytów, ekologicznej ochrony środowiska, miniaturyzacji i wielkoskalowej, sieci i zdalnego sterowania, nowych możliwości dostosowywania materiałów i optymalizacja interakcji człowiek-komputer. Można przewidzieć, że technologia wiercenia CNC będzie nadal wprowadzać innowacje i rozwijać się, zapewniając skuteczniejsze wsparcie postępu przemysłu produkcyjnego.
Kontakt: Ada Li
Tel: +86 17722440307
WhatsApp: +86 17722440307
E-mail: Ada@honscn.com
Dodaj: 4F, nr. 41 Huangdang Road, Luowuwei Industrial, Dalang Street, Longhua, Shenzhen, 518109, Chiny