Honscn profesyonel CNC İşleme Hizmetlerine odaklanıyor
2003'ten beri.
Cnc metal işleme parçaları ve benzeri ürünlerin kalitesine olan bağlılık, Honscn Co., Ltd.'nin şirket kültürünün önemli bir bileşenidir. Her seferinde, ilk seferde doğru yaparak en yüksek kalite standartlarını korumaya çalışıyoruz. Müşteri gereksinimlerimizi karşıladığımızdan emin olarak performansımızı sürekli olarak öğrenmeyi, geliştirmeyi ve iyileştirmeyi amaçlıyoruz.
HONSCN Güvenilir ve popülerdir; ne kadar çok ve daha iyi incelemeler ve derecelendirmeler olursa bunun en iyi kanıtıdır. Web sitemizde ve sosyal medyada yayınladığımız her ürün, kullanılabilirliği, görünümü vb. konularda birçok olumlu yorum almıştır. Ürünlerimiz dünya çapında daha fazla ilgi görüyor. Ürünlerimizi tercih eden artan sayıda müşteri var. Markamız daha büyük pazar nüfuzu kazanıyor.
Honscn'de, benzersiz iş hedeflerinize ulaşmanıza yardımcı olacak bir dizi özelleştirilmiş hizmet sunuyoruz. Yüksek kalitede özelleştirilebilir cnc metal işleme parçaları sağlamak ve siparişlerinizi zamanında teslim etmek için tam donanıma sahibiz.
Talaşlı imalat alanında, CNC işleme proses yöntemleri ve proseslerin bölünmesinden sonra proses rotasının ana içeriği, bu proses yöntemlerinin ve proses sırasının rasyonel bir şekilde düzenlenmesidir. Genel olarak mekanik parçaların CNC ile işlenmesi şunları içerir: kesme, ısıl işlem ve yüzey işleme, temizleme ve muayene gibi yardımcı işlemlerdir. Bu süreçlerin sırası parçaların kalitesini, üretim verimliliğini ve maliyetini doğrudan etkiler. Bu nedenle CNC işleme rotaları tasarlanırken kesme, ısıl işlem ve yardımcı işlemlerin sırası makul bir şekilde düzenlenmeli ve aralarındaki bağlantı sorunu çözülmelidir.
Yukarıda belirtilen temel adımlara ek olarak, bir CNC işleme rotası geliştirilirken malzeme seçimi, fikstür tasarımı ve ekipman seçimi gibi faktörlerin de dikkate alınması gerekir. Malzeme seçimi doğrudan parçaların nihai performansıyla ilgilidir; farklı malzemelerin kesme parametreleri için farklı gereksinimleri vardır; Fikstür tasarımı, işleme sürecinde parçaların stabilitesini ve doğruluğunu etkileyecektir; Ekipman seçiminde ürünün özelliklerine göre üretim ihtiyacına uygun takım tezgahı tipinin belirlenmesi gerekmektedir.
1, hassas makine parçalarının işleme yöntemi yüzeyin özelliklerine göre belirlenmelidir. Çeşitli işleme yöntemlerinin özelliklerine aşina olunması, işleme ekonomisi ve yüzey pürüzlülüğü konusunda uzmanlaşılması temelinde, işleme kalitesini, üretim verimliliğini ve ekonomisini sağlayabilecek yöntem seçilir.
2, her işlemin konumlandırma referansını makul bir şekilde belirlemek için kaba ve ince referans seçimi ilkesine göre uygun çizim konumlandırma referansını seçin.
3 , Parçaların işleme proses rotası geliştirilirken parçaların analizi esas alınarak parçaların kaba, yarı-ince ve bitirme aşamalarına bölünmesi gerekir, ve işlemin konsantrasyon ve dağılım derecesini belirlemek ve yüzeylerin işlem sırasını makul şekilde düzenlemek. Karmaşık parçalar için öncelikle birkaç şema düşünülebilir ve karşılaştırma ve analiz sonrasında en makul işleme şeması seçilebilir.
4, her işlemin işlem ödeneğini ve işlem boyutunu ve toleransını belirleyin.
5, takım tezgahlarını ve işçileri, klipleri, miktarları, kesici takımları seçin. Mekanik ekipmanın seçimi yalnızca işleme kalitesini sağlamamalı, aynı zamanda ekonomik ve makul olmalıdır. Seri üretim koşullarında genel olarak genel takım tezgahları ve özel aparatlar kullanılmalıdır.
6, Her ana sürecin teknik gereksinimlerini ve denetim yöntemlerini belirleyin. Her bir işlemin kesme miktarının ve zaman kotasının belirlenmesine genellikle tek bir küçük seri üretim tesisi için operatör tarafından karar verilir. Genellikle işleme proses kartında belirtilmez. Ancak orta ölçekli ve seri üretim yapan tesislerde üretimin rasyonelliğini ve ritim dengesini sağlamak için kesim miktarının belirtilmesi ve istenildiği gibi değiştirilmemesi gerekmektedir.
Önce kaba, sonra ince
İşleme doğruluğu, kaba tornalama - yarı ince tornalama - ince tornalama sırasına göre kademeli olarak geliştirilir. Kaba torna tezgahı, iş parçası yüzeyindeki işleme payının çoğunu kısa sürede kaldırabilir, böylece talaş kaldırma oranını arttırır ve payın tek biçimliliği gereksinimini karşılar. Kaba tornalamadan sonra kalan miktar bitirme gereksinimlerini karşılamıyorsa, bitirme için bir yarı bitirme arabası ayarlamak gerekir. İnce arabanın, işleme doğruluğunu sağlamak için parçanın dış hatlarının çizim boyutuna göre kesilmesini sağlaması gerekir.
Önce yaklaş, sonra uzaklaş
Normal şartlarda, takımın hareket mesafesini kısaltmak ve boş seyahat süresini azaltmak için önce takıma yakın olan parçaların işlenmesi, ardından takımdan takıma uzak olan parçaların işlenmesi gerekir. Tornalama işleminde boş veya yarı mamulün sertliğini korumak ve kesme koşullarını iyileştirmek faydalıdır.
İç ve dış kesişim ilkesi
Hem iç yüzeyi (iç boşluk) hem de işlenecek dış yüzeyi olan parçalar için işleme sırası düzenlenirken önce iç ve dış yüzeylerin pürüzlendirilmesi, ardından iç ve dış yüzeylerin bitirilmesi gerekir. İşlendikten sonra parçanın yüzeyi (dış yüzey veya iç yüzey), daha sonra işlenen diğer yüzeyler (iç yüzey veya dış yüzey) olmamalıdır.
Temel ilk prensibi
Sonlandırma referansı olarak kullanılan yüzeye öncelik verilmelidir. Bunun nedeni, konumlandırma referansının yüzeyi ne kadar doğru olursa, sıkıştırma hatasının da o kadar küçük olmasıdır. Örneğin, şaft parçalarının işlenmesinde, genellikle önce merkez delik işlenir ve daha sonra dış yüzey ve uç yüz, hassaslık esası olarak merkez delikle işlenir.
Birinci ve ikinci prensibi
İşlenmemiş parçadaki ana yüzeydeki modern kusurları erken bulmak için öncelikle parçaların ana çalışma yüzeyi ve montaj taban yüzeyi işlenmelidir. İkincil yüzey, son bitirme işleminden önce ana işlenmiş yüzeye belirli bir dereceye kadar serpiştirilebilir ve yerleştirilebilir.
Delikten önceki yüzün prensibi
Kutu ve braket parçalarının düzlemsel anahat boyutu büyüktür ve genellikle önce düzlem işlenir, ardından delik ve diğer boyutlar işlenir. İşleme sırasının bu düzenlemesi, bir yandan işlenmiş düzlemin konumlandırılması ile istikrarlı ve güvenilirdir; Öte yandan, işlenmiş düzlemde deliğin işlenmesi kolaydır ve özellikle delme sırasında deliğin işleme doğruluğunu artırabilir, deliğin ekseninin sapması kolay değildir.
Parçaların işleme sürecini geliştirirken, parçaların üretim tipine göre işçiler için uygun işleme yönteminin, takım tezgahı ekipmanının, kelepçe ölçüm aletlerinin, boş ve teknik gereksinimlerin seçilmesi gerekir.
Sac metal, CNC, 3D baskı, ekipman kabuğu, yapısal parçalar ve en yaygın üç işleme yöntemi için mevcut pazardır.
Her birinin kendi avantajları ve dezavantajları vardır ve şekillendirme özellikleri, yüksek verimlilik ve düşük maliyet nedeniyle sac işleme nispeten basittir ve numune, küçük parti ve seri üretimde avantajlar vardır.
Sac işleme için ortak hammaddeler demir, alüminyum, paslanmaz çelik ve diğer metal plakalardır ve ana işleme teknolojisi lazerle kesme, bükme, perçinleme, damgalama, kaynak, püskürtme ve diğer ana işlemlerdir.
Sac metal hammaddeleri standart plakalardır ve esas olarak aşağıdaki üç kategoriye ayrılır: demir, alüminyum, paslanmaz çelik .Aynı bölgede en ucuz demir levha olup bunu alüminyum levha, en pahalı ise paslanmaz çelik takip etmektedir.
Malzeme özelliği
1. Pas
Demir plaka paslanmalı, 201 Mayıs paslanmalı, 304 paslanmaz, alüminyum plaka paslanmaz.
Demir plaka kesinlikle paslıdır, parçaların genel görünümü bu tür sorunları çözmek için püskürtme, boyama vb. yüzey işlem işlemlerinden geçmiştir, ancak yüzey işlemi bazı maliyetleri artırmıştır, fiyatı yüksek olmayabilir, ancak seri üretimde özellikle önemlidir.
Bu sorunu çözmek için bir de demir plaka adı verilen bir çeşit demir plaka bulunmaktadır. galvanizli levha ( Galvanizli sac çiçekli ve çiçeksiz olmak üzere iki çeşit galvaniz saca ayrılmıştır. ) , çinko ile kaplanmış veya hemen hemen aynı fiyata sahip orijinal plakaya dayanmaktadır, ancak pas sorununu çözmek için, ancak galvanizli darbe ve çizik tabakası da paslanacaktır.
Maliyetleri azaltmak amacıyla ekipmanların iç yapısında genellikle galvanizli saclar kullanılmaktadır. Elbette dış parça olarak da kullanılabilir.
(Malzeme özellikleri açısından, paslanmaz çelik 201, 304'ten nispeten daha serttir ve 304'ün tokluğu daha büyük olacaktır)
2. İşlenebilirlik
Sac metalin iki ana işleme süreci: bükme ve kaynak. Malzeme açısından demir levhaların ve paslanmaz çeliğin sünekliği ve çekme mukavemeti nispeten stabildir ve bükme ve kaynak yapılabilir.
Burada alüminyuma odaklanan bu malzeme, farklı serilere sahiptir, ortak 5052, 6061, 7075.
7 serisi alüminyum, aynı zamanda havacılık alüminyumu olarak da adlandırılır, en yüksek mukavemet, yüksek sertlik, ancak sertlik çok yüksek, bükülmeye uygun değil, kırılma.
6 serisi alüminyum, mukavemeti, sertliği orta mesafede olmakla birlikte bükülmeye de uygun değildir, kırılma riski de bulunmaktadır.
5 serisi alüminyum, süneklik ve çekme mukavemeti de stabildir, bükülmeye uygundur.
Alüminyumun seçimi, bükülmeye uygun olup olmadığına ek olarak, fark aynı zamanda alüminyumun ortak yüzey işleme oksidasyon işlemidir ve oksidasyondan sonra farklı alüminyum serilerinin rengi de küçük bir farka sahip olacaktır.
Ek olarak, demir ve paslanmaz çelikle karşılaştırıldığında alüminyumun ısıl iletkenliği yüksektir, demir ve paslanmaz çeliğe kıyasla kaynak yapmak zordur, genel fabrikanın alüminyum parçaları kaynaklama kabiliyeti yoktur, bu nedenle kaynak maliyeti yüksektir, bu da aynı zamanda üretim maliyetini etkileyen nedenlerin büyük bir kısmıdır.
Sonuç
1, demir plaka en ucuzudur, ancak paslanması kolaydır, genellikle sprey yüzey işleme işlemiyle iç yapısal parçalar yapılabilir ve parçaların görünümü yapılabilir. Yaygın olarak kullanılan demir levha esas olarak soğuk haddelenmiş levha ve galvanizli levhaya iki türe ayrılır, fark galvanizli tabaka olup olmadığıdır, fiyat benzerdir.
2, alüminyum levha malzeme maliyeti iyidir, eloksal yapabilir, sadece 5 serisi bükebilir, 6 serisi, 7 serisi bükülebilir (diğer 1 serisi tanıtılmamıştır), iç yapısal parçalar için uygun paslanması kolay değildir, kaynak maliyetleri daha yüksekse, özel şekilli parçaların maliyeti daha yüksek olacaktır.
3, paslanmaz çelik yüzey püskürtme işlemi yapmaz, tel çekme etkisi yapabilir, yapısal parçalar yapabilir, şekilli parçalar yapabilir, tek dezavantajı yüksek fiyattır.
Süreci açıklamadan önce, öncelikle CNC, sac metal, damgalama, enjeksiyon kalıplama ve şimdi de 3D baskı gibi birçok büyük işleme endüstrisindeki bu işleme süreçleriyle esas olarak hangi sorunların çözüldüğünü düşünelim.
Genel bakış açısına göre spesifik işleme detaylarının yanı sıra, aslında farklı hammaddelerin 3 boyutlu kalıplama problemini de çözüyorlar.
Bu, farklı hammaddeler kullanılarak farklı bir işleme süreci olmasına rağmen, bu işleme süreçlerinin amacının aynı olduğu anlamına gelir; uzunluk, genişlik ve yükseklik + diğer özelliklere sahip yapısal bir parça yapmak.
Sac metal şekillendirme prosesini, verimliliğini ve avantajlarını daha net ve sezgisel bir şekilde tanıtmak için sac metal işlemenin temel prosesini analiz edeceğiz - sac bükme şekillendirme prensibi, bükme prensibi ve maliyet muhasebesi olmak üzere üç açıdan.
Fiili işlemede, avuç içi boyutunda bir 3D yapısal parça yalnızca on saniyede oluşturulabiliyor ve biraz daha büyük iş parçaları için, karmaşık noktaların alınması ve yerleştirilmesinin yanı sıra kalıplama süresi yalnızca onlarca saniyedir. Bu kadar büyük bir şeyi yapmak için kalıp açmanıza gerek yok mu, şekillendirmek için onlarca saniyelik bir işleme teknolojisi de var mı? Sac bükmenin temel avantajı hızlı şekillendirme ve düşük maliyettir !
Bir detay daha: Hammadde bükülmeden önce yumuşaktır, ancak büküldükten sonra sertleşir! Bu detay, sac metal yapı tasarımında çok önemli bir kavramdır; sac, mukavemeti artırmak için bükülebilir!
Örneğin, nispeten geniş alana sahip bir parça yapmak için, deformasyonu önlemek amacıyla, ince plakayı bükerek doğrudan güçlendirmek için bu stratejiyi kullanabiliriz, bu hem ağırlığı azaltabilir hem de hammadde maliyetini azaltabilir.
Avantajların özeti
1, düşük hammadde maliyeti: büyük bir hacim elde etmek için çok ince malzemeler kullanabilir; Bükme işlemi aynı zamanda deformasyon riskini çözmek amacıyla plakanın mukavemetini arttırmak için de kullanılabilir. Ayrıca plakadan üç boyutlu parçaya bükülerek hızlı bir şekilde oluşturulabilmektedir (Sac sınıfının bu seviyedeki avantajlarına değinerek burada büyük bir hacimden söz edilebileceğini unutmayın).
2, kalıplama hızı hızlıdır, kalıplama maliyeti düşüktür, kalıplama hızı boyuta bağlı değildir, kalıbı açmaya gerek yoktur, prova ve seri üretim için uygundur.
Sac işleme prensipleri
Bükme prensibi, üst ve alt kalıpların ekstrüzyonu yoluyla, farklı açı boyutlarındaki bükme iş parçalarının katlanabilmesi ve kalıpların esas olarak alt kalıplardan ve üst kalıplardan oluşmasıdır. Bir kalıplama kalıbına ek olarak, alt kalıp genellikle V-yuvalı bir alt kalıptır ve bükme malzemesinin kalınlığına göre farklı bükme kalıpları seçilir.
Yaygın olarak kullanılan bükme kalıbı esas olarak iki tür düz bıçak ve kavisli bıçağa bölünmüştür; düz bıçak ile kavisli bıçak arasındaki temel fark, bükülme girişiminden kaçınma sorununu dikkate almaktır.
Doğruluğu sağlamak ve verimliliği artırmak amacıyla bazı özel şekillere ek olarak, kepenkler (bükme makineleri veya delme makineleri tarafından işlenebilen) ve yaygın olarak kullanılan ark kalıpları gibi bazı kalıplama kalıpları da önceden hazırlanacaktır.
Sonunda CNC işleme teknolojimiz veya hangi hizmetlerin verilebileceği hakkında daha fazla bilgi edinmek isterseniz aşağıdaki yollardan bizimle iletişime geçebilirsiniz, size hizmet vermekten mutluluk duyarız.
Web sitesi🛒: https://cnchonscn.com
E-posta📮:ada@honscn.com
Danışmaya hoş geldiniz!
Deliksiz hiçbir makine yapılamaz. Parçaları birbirine bağlamak için çeşitli boyutlarda vida delikleri, pim delikleri veya perçin delikleri gereklidir; Şanzıman parçalarını sabitlemek için çeşitli montaj deliklerine ihtiyaç vardır; Makine parçalarının kendisinde de birçok türde delik bulunur (yağ delikleri, proses delikleri, ağırlık azaltma delikleri vb. gibi). Deliklerin gereksinimleri karşılayacak şekilde işlenmesi işlemine delik işleme denir.
İç deliğin yüzeyi mekanik parçaların önemli yüzeylerinden biridir. Mekanik parçalarda delikli parçalar genellikle toplam parça sayısının %50 ila %80'ini oluşturur. Delik tipleri de çeşitlidir; silindirik delikler, konik delikler, dişli delikler ve şekilli delikler vardır. Yaygın silindirik delikler genel deliklere ve derin deliklere ayrılır ve derin deliklerin işlenmesi zordur.
1. Her şeyden önce, U matkap ile sıradan matkap arasındaki fark, U matkabın çevresel bıçağı ve merkez bıçağı kullanmasıdır; bu Açıda, U matkap ile sıradan sert matkap arasındaki ilişki aslında makine kelepçeleme torna takımı arasındaki ilişkiye benzer. ve kaynak tornalama aleti ve bıçak, alet aşındıktan sonra yeniden taşlamaya gerek kalmadan doğrudan değiştirilebilir. Sonuçta, değiştirilebilir bıçakların kullanılması, sert matkabın tamamından daha fazla malzeme tasarrufu sağlar ve bıçağın tutarlılığı, parçanın boyutunun kontrol edilmesini kolaylaştırır.
2. U matkabın sertliği daha iyidir, yüksek ilerleme hızı kullanabilirsiniz ve U matkabın işleme çapı sıradan matkaba göre çok daha büyüktür, maksimum D50 ~ 60 mm'ye ulaşabilir, tabii ki U matkap çok küçük olamaz Bıçağın özellikleri nedeniyle.
3.U matkap çeşitli malzemelerle karşılaştığında yalnızca aynı tipte farklı derecelerdeki bıçağı değiştirmeniz gerekir, sert matkap o kadar uygun değildir.
4. Sert delme ile karşılaştırıldığında, U delme ile açılan deliğin hassasiyeti hala daha yüksektir ve özellikle soğutma ve yağlama düzgün olmadığında yüzey daha iyidir, bu daha açıktır ve U delme deliğin konum doğruluğunu düzeltebilir ve sert delme yapılamaz, U delme delik bıçağı olarak kullanılabilir.
1. U matkap, kesme parametrelerini düşürmeden eğim açısı 30°'den az olan yüzeylerde delikler açabilir.
2. U delme işleminin kesme parametreleri %30 oranında azaltıldıktan sonra kesişen deliklerin işlenmesi, kesişen deliklerin işlenmesi ve faz perforasyonu gibi aralıklı kesme işlemleri gerçekleştirilebilir.
3. U delme, çok adımlı deliklerin delinmesini gerçekleştirebilir ve sıkıcı, pah kırma, eksantrik delme yapabilir.
4. Delme sırasında, delme talaşları çoğunlukla kısa talaşlardır ve dahili soğutma sistemi, ürünün işlenmesinin sürekliliğine yardımcı olan takımdaki talaşları temizlemeden güvenli talaş kaldırma için kullanılabilir, işlem süresini kısaltır ve Verimliliği artırın.
5. Standart uzunluk-çap oranı koşulunda U matkapla delik açarken talaş kaldırmaya gerek yoktur.
6. Değiştirilebilir alet için U matkap, keskinleştirmeden bıçak aşınması, daha kolay değiştirme ve düşük maliyet.
7. U delme ile işlenen deliğin yüzey pürüzlülüğü değeri küçüktür ve tolerans aralığı küçüktür, bu da bazı sıkıcı takımların işinin yerini alabilir.
8. U delmenin kullanılması, merkezdeki deliğin önceden delinmesine gerek duymaz ve işlenen kör deliğin alt yüzeyi nispeten düzdür, bu da düz tabanlı matkabı ortadan kaldırır.
9. U delme teknolojisinin kullanımı yalnızca delme aletlerini azaltmakla kalmaz, U delme semente karbür bıçağın başı olduğundan kesme ömrü sıradan matkabın on katından fazladır, aynı zamanda üzerinde dört kesme kenarı vardır. bıçak, bıçak aşınması herhangi bir zamanda değiştirilebilir, yeni kesme, taşlama ve takım değiştirme zamanından çok fazla tasarruf sağlar, ortalama verimliliği 6-7 kat artırabilir.
1. U matkap kullanıldığında, takım tezgahının sertliği ve takımın ve iş parçasının nötrlüğü yüksektir, bu nedenle U matkap, yüksek güçlü, yüksek sertlikte ve yüksek hızlı CNC takım tezgahlarında kullanıma uygundur.
2. U delme kullanıldığında, ortadaki bıçak iyi bir tokluğa sahip olmalı ve çevresel bıçak nispeten keskin bıçaklarla kullanılmalıdır.
3. Farklı malzemeleri işlerken, farklı yiv bıçağı seçilmelidir, normal koşullar altında, küçük ilerleme, küçük tolerans, U delme uzunluğu/çap oranı, daha küçük kesme kuvvetine sahip yiv bıçağı seçilmelidir, aksine kaba işleme, büyük tolerans, U delme uzunluğu Çap oranı küçükse, daha büyük kesme kuvvetine sahip yivli bıçağı seçin.
4. U delmeyi kullanırken, takım tezgahı milinin gücünü, U delme kelepçesinin stabilitesini, kesme sıvısının basıncını ve akışını dikkate almalı ve U delmenin talaş kaldırma etkisini kontrol etmeliyiz, aksi takdirde yüzey pürüzlülüğünü büyük ölçüde etkileyecektir ve deliğin boyutsal doğruluğu.
5. U matkabı takarken, U matkap merkezinin iş parçasının merkezine denk gelmesi ve iş parçasının yüzeyine dik olması gerekir.
6. U delme kullanılırken farklı parça malzemelerine göre uygun kesme parametreleri seçilmelidir.
7. Test kesimini delerken, U matkap bıçağının hasar görmesine veya U matkabın hasar görmesine neden olacak şekilde dikkat ve korku nedeniyle ilerlemeyi veya hızı istediğiniz gibi azaltmadığınızdan emin olun.
8. U-matkap işlemeyi kullanırken, bıçak aşındığında veya hasar gördüğünde, nedenlerini dikkatli bir şekilde analiz etmek ve bıçağı daha iyi tokluk veya aşınmaya daha dayanıklı bir bıçakla değiştirmek gerekir.
9. Adım deliklerini işlemek için U matkap kullanıldığında, işleme büyük deliklerden başlamak ve ardından küçük delikleri işlemek gerekir.
10. Delme sırasında talaşları temizlemek için kesme sıvısının yeterli basınca sahip olmasına dikkat edin.
11. U matkabın ortasında ve kenarında kullanılan bıçak farklıdır, yanlış kullanılmamalıdır, aksi takdirde U matkap çubuğuna zarar verir.
12. U-matkapla delik açarken iş parçası döndürme, alet döndürme ve aletin ve iş parçasının eş zamanlı dönüşü kullanılabilir, ancak takım doğrusal besleme modunda hareket ettirildiğinde en yaygın yöntem iş parçası döndürme modunu kullanmaktır.
13. CNC arabada işleme yaparken torna tezgahının performansı dikkate alınmalı ve genellikle hızı ve düşük ilerlemeyi azaltacak şekilde kesme parametreleri uygun şekilde ayarlanmalıdır.
1. Bıçak çok hızlı hasar görür, kırılması kolay olur ve işleme maliyeti artar.
2. İşleme sırasında sert bir ıslık sesi duyulur ve kesme durumu anormaldir.
3. Takım tezgahlarının işleme doğruluğunu etkileyen makine titreşimi.
1. U matkabın kurulumunda hangi bıçağın yukarı, hangi bıçağın aşağıda, hangisinin içeriye, hangisinin dışarıya baktığı gibi pozitif ve negatif yönlere dikkat edilmelidir.
2. U delmenin merkez yüksekliği, kontrol aralığını gerektirecek şekilde çap boyutuna göre düzeltilmelidir, genellikle 0,1 mm dahilinde kontrol edilir, U delmenin çapı ne kadar küçükse, merkez yüksekliği gereksinimleri o kadar yüksek olur, merkez yüksekliği U delmede iyi değildir iki tarafı aşınır, açıklık büyür, bıçağın kullanım ömrü kısalır, küçük U delmenin kırılması kolaydır.
3. U matkap, soğutma sıvısı için çok yüksek gereksinimlere sahiptir; soğutma sıvısının U matkabın merkezinden yayılması sağlanmalıdır; soğutma sıvısının basıncı ne kadar yüksek olursa, kulenin fazla su çıkışı da o kadar iyi şekilde bloke edilebilir. basınç.
4, U sondaj kesme parametreleri üreticinin talimatlarına tam olarak uygun olarak, aynı zamanda farklı marka bıçakları, makine gücünü dikkate almak için, işleme, takım tezgahı boyutunun yük değerine başvurabilir, genellikle yüksek hız, düşük ilerleme kullanarak uygun ayarlamalar yapabilir .
5.U matkap bıçağını sık sık kontrol etmek için, zamanında değiştirme, farklı bıçaklar ters monte edilemez.
6. Besleme miktarını ayarlamak için iş parçasının sertliğine ve takım süspansiyonunun uzunluğuna göre, iş parçası ne kadar sertse, takım süspansiyonu ne kadar büyükse, kesme miktarı o kadar küçük olur.
7. Bıçağın aşırı aşınmasını kullanmayın, bıçak aşınmasının üretiminde ve işlenebilecek iş parçası sayısı arasındaki ilişki, yeni bıçakların zamanında değiştirilmesiyle kaydedilmelidir.
8. Doğru basınçla yeterli dahili soğutma sıvısı kullanın. Soğutucunun ana işlevi talaş kaldırma ve soğutmadır.
9.U matkap, bakır, yumuşak alüminyum vb. gibi daha yumuşak malzemelerin işlenmesi için kullanılamaz.
Honscn, cnc işleme, donanım mekanik parça işleme, otomasyon ekipmanı parça işleme konularında uzmanlaşmış, on yıldan fazla cnc işleme deneyimine sahiptir. Robot parçaları işleme, İHA parçaları işleme, bisiklet parçaları işleme, tıbbi parça işleme vb. CNC işlemenin yüksek kaliteli tedarikçilerinden biridir. Şu anda şirket, müşterilere hassas ve yüksek kaliteli cnc yedek parça işleme hizmetleri sunmak için 50'den fazla cnc işleme merkezi, taşlama makinesi, freze makinesi, yüksek kaliteli, yüksek hassasiyetli test ekipmanına sahiptir.
1 Şapka tipi magazinin takım değişimi Sabit adresli takım değiştirme modu çoğunlukla benimsenir ve takım numarası, takım koltuğu numarasına göre sabitlenir. Takım değiştirme işlemi, kısaca iş mili takım değiştirme modu olarak adlandırılan takım magazininin yanal hareketi ve iş milinin yukarı aşağı hareketi ile gerçekleştirilir. Takım değiştirme manipülatörü olmadığından, takım seçme işlemi, takım değiştirme işleminden önce önceden seçilemez. Takım değiştirme talimatı ve takım seçme talimatı genellikle aynı program bölümünde yazılır ve talimat formatı aşağıdaki gibidir:M06 T
Komut yürütüldüğünde, takım magazini önce iş mili üzerindeki takım numarasına karşılık gelen takım tutucuyu takım değiştirme konumuna çevirir ve iş mili üzerindeki takımı tekrar takım tutucuya geçirir ve ardından takım magazini belirtilen takımı döndürür takım değiştirme komutunda iş milini değiştirir. Bu takım magazini için, TX x M06'dan önce yürütülse bile, takım önceden seçilemez, * M06 yürütüldüğünde son takım seçimi eylemi yine de yürütülür. M06'nın önünde TX X yoksa sistem alarm verecektir.2 Disk ve zincir magazini takım değişimi
Çoğu rastgele adres takım değiştirme modunu kullanır. Takım numarası ile takım yuvası numarası arasındaki karşılık gelen ilişki rastgeledir ancak buna karşılık gelen ilişki NC sistemi tarafından hatırlanabilir. Bu takım magazininin takım değişimi manipülatöre bağlıdır. Komut ve takım değiştirme eylemi şu şekildedir: takım komutu TX takım magazininin dönüşünü kontrol eder ve seçilen takımı takım değiştirme çalışma konumuna getirir; takım değiştirme komutu M06 ise takım değiştirme manipülatörünün eylemini gerçekleştirmek için takım değiştirme manipülatörünün eylemini kontrol eder. iş mili takımı ile takım magazininin takım değiştirme konumu arasındaki takım değişimi. Takım seçme komutu ve takım değiştirme komutu aynı program bölümünde olabilir veya ayrı ayrı yazılabilir. Takım seçimi ve takım değiştirme komutuna karşılık gelen eylemler aynı anda veya ayrı ayrı da çalıştırılabilir. Talimat formatı aşağıdaki gibidir:
Tx x M06;Komut yürütüldüğünde, takım magazini önce TX takımını takım değiştirme konumuna çevirir ve ardından manipülatör, TX takımını değiştirme amacını gerçekleştirmek için takım magazini takımını iş mili takımıyla değiştirir. iş miline.Yukarıdaki iki yöntemi okuduktan sonra, yöntem 2'nin takım seçme eylemiyle işleme eylemiyle örtüştüğü görülebilir, böylece takımı değiştirirken takımı seçip doğrudan takımı değiştirmek gerekli değildir; iş verimliliğini artırır.
Daha önce de belirtildiği gibi takım magazininin takım değiştirme komutu takım tezgahı üreticisi ile ilgilidir. Örneğin, bazı takım magazinleri yalnızca Z ekseninin takım değiştirme noktasına dönmesini değil aynı zamanda Y ekseninin de takım değiştirme noktasına dönmesini gerektirir. Programın formatı aşağıdaki gibidir:
Aynı program bölümünde takım seçimi ve takım değiştirme talimatlarını yazarken, farklı üreticilerin takımlarının uygulama kuralları da farklı olabilir. Varsa yazım sırasına bakılmaksızın kalıp seçimi ve takım değiştirme kurallarına uyulacaktır. Bazı kurallar, takım değiştirme komutu yürütülmeden önce takım seçme komutunun yazılması gerektiğini şart koşar. Aksi takdirde, yukarıdaki programda gösterildiği gibi eylem önce takımı değiştirmek ve ardından takımı seçmektir. Bu durumda M06 komutu uygulanmadan önce takım seçme komutu yazılmazsa sistem alarm verecektir.
Günümüzde akıllı telefonlar plastik arka kapaktan ince metal gövdeye dönüştü. Akıllı görünüm tüketicileri cezbetse de cep telefonu kılıfı parça tedarikçilerinin üretim süreci daha zordur. Kasanın kesilmesi ve işlenmesi oldukça yüksek hassasiyet gerektirdiğinden, küçük bir sapma bile olsa iş parçasının hurdaya çıkmasına ve kârın erozyona uğramasına neden olabilir.
CNC işleme verimini artırmak amacıyla, cep telefonu kutusu üreticileri, CNC makinelerinin normal üretim temposunu sürdürmesini sağlamak amacıyla sıklıkla takımları sık sık değiştirmek zorunda kalıyor, ancak bu, sarf malzemelerinin maliyetinde bir artışa yol açıyor ve aynı zamanda kârları da etkiliyor. Ayrıca cep telefonu kılıfı işleme endüstrisi, CNC kesim makinesinin ani arızasının, üretim kapasitesinin düşmesi ve teslimatın gecikmesi gibi olumsuz zincirleme reaksiyonlara yol açacağı ve bunun müşteri memnuniyetine ve iyi niyetine zarar vereceği korkusuyla üretim hızına büyük önem vermektedir. Bu nedenle, düzenli denetimlerin yapılması için insan gücü tahsis eder ve ikinci basamak bakım desteği sağlamak üzere dış kaynak sağlayıcılara görev verir, ancak bu yöntemler pasiftir, anormal durumlarla ilk seferde etkili bir şekilde başa çıkmak zordur.
Cep telefonu kılıfı CNC makine uygulamasının örneklerinden biridir. CNC kesim, çeşitli işleme ve imalat alanlarında yaygın olarak kullanılmaktadır ve çeşitli tedarikçiler benzer bir kar savunma savaşıyla karşı karşıyadır. Linghua teknoloji ölçümü ve otomasyon ürünleri bölümünün yöneticisi Xu Changyi, ister işleme doğruluğunu geliştirmek ister üretkenliği artırmak isteyin, balta alt maaş çizim planının kesme sürecini, özellikle de titreşim izlemeyi izlemek olduğuna inanıyor; Dengesizlik, rezonans veya yanlış hizalama nedeniyle makinenin titreşim değeri makul aralığın dışına çıkarsa, makinenin çalışmasını kolayca etkileyerek arıza nedeniyle kapanmaya neden olabilir.
PC tabanlı izleme çözümü, hassas titreşim sinyallerini yakalamak açısından PLC çözümünden daha iyidir
CNC işleme makinesi zekayla donatılabilir ve bir dizi tam zamanlı titreşim izleme mekanizmasıyla donatılabilirse, makinenin sağlık durumunu herhangi bir zamanda teşhis edebilir. Nihai bitmiş ürünün çıktısını beklemek ve anormalliğin nedenini sonradan yargılamak yerine, önceden önleyici tespit yoluyla işleme makinesinin olağandışı durumunu gerçek zamanlı olarak tespit edebilir ve işlemenin optimize edilmesi ve ayarlanması da dahil olmak üzere ilgili arıtma önlemlerini hızlı bir şekilde alabilir. parametreler (iş mili hızının değiştirilmesi gibi) veya takımların değiştirilmesi vb. Küçük sapmaları anında çözüme kavuşturmak ve gelecekte büyük felaketlere yol açmamak.
CNC işleme tezgahlarının kesme titreşiminin izlenmesinin şu anda yeni bir konu olmadığı inkar edilemez. Geçmişte, basitlik ve kolaylık talebiyle, CNC makinesi bağlı olduğu sürece hızlı bir şekilde fayda üretebilmesiyle övünen bazı PLC çözümleri vardı; Bu nedenle, titreşim izlemeyi kesmeye yardımcı olacak PLC mevcut olduğundan, bazı kişilerin neden PC tabanlı izleme şemasına ihtiyaç duyulduğunu merak etmesi kaçınılmazdır.
Sözde şeytan ayrıntılarda gizlidir. Bazı ince titreşim sinyalleri veya yüksek frekanslı sinyaller, bazı gerçekleri bir dereceye kadar yansıtır. Bağlantı mekanizması dengesiz olmaya başlayabilir, dönen mil yatağı bilyesi kırılabilir ve iletim gücünü etkileyebilir veya bağlantı elemanları gevşeyebilir, bu da CNC işleme makinesinin "hastalanmaya" başladığı ve semptomların farklı olduğu anlamına gelebilir. farklı makine özellikleri; Düşük örnekleme hızı özelliklerine sahip, sınırlı bant genişliği aralığını ve sabit algoritmayı destekleyen PLC çözümü sayesinde bu ince ve değişken işaretlerin yakalanması kolay değildir. CNC izleme çözümü küçük değişiklikleri yakalayabilir ve kullanıcıların doğruluğun azalmasına veya kapasite düşüşüne yol açabilecek temel faktörleri hızlı bir şekilde kavramasına yardımcı olabilirse, mümkün olan en kısa sürede yanıt verebilirler.
Bunu göz önünde bulundurarak Linghua, yüksek hassasiyet ve yüksek örnekleme oranı koşulu altında döner transfer makine ve ekipmanı için 24 saat sürekli veri toplama ve titreşim ölçümü gerçekleştirebilen mcm-100 adı verilen bir kesme titreşimi izleme şemasını başlattı. ve veri toplama, titreşim analizi ve hesaplama, çalıştırma, İnternet erişimi vb. fonksiyonları entegre etmek, CNC makinesi kullanıcılarının geleneksel kesme işleminin karşılaştığı çeşitli zorlukları başarılı bir şekilde çözmelerine yardımcı olmak ve CNC makinesine en rahat ve yüksüz bir şekilde zeka kazandırmak yol. Harikayı başar Yüksek hassasiyetli izleme yoluyla önleyici bakımın etkisi
Xu Changyi, genel anlamda CNC makinelerinin en çok oluşturmak istediği üç algılama durumu olduğunu açıkladı. Bunlardan biri, kesme sırasında iş milinin titreşimini izlemeyi amaçlayan "iş mili titreşim tespiti"dir. Yöntem, zaman alanı sinyalinin RMS değerini doğrudan ölçmektir. Kritik değeri aşarsa hızı azaltın veya çalışmayı durdurun; İkincisi ise rulmanların sağlık durumunu teşhis etmeye yönelik olan “rulman kalitesi teşhis tikidir”. CNC'nin kesme yapmadığı ve yalnızca yüksek hızda rölantide çalıştığı durumlarda gerçekleştirilir; Üçüncüsü, iş mili çarpışmasını tespit etmek için kullanılan "iş mili çarpışma tespiti"dir. Titreşim dalgası modeli bazı varsayılan koşulları karşıladığında çarpışmanın meydana geldiğine karar verilir ve iş mili hareketi derhal durdurulur.
Yukarıdaki 1. ve 2. durumlar, titreşim sinyallerinin doğruluğu ve bant genişliği aralığı ile yakından ilgilidir. PLC çözümleri çok az bilgi yakalayabilir ve bu da kullanıcıların beklenmedik durum stratejileri oluşturmasına yardımcı olmayı zorlaştırır; Buna karşılık, mcm-100 yalnızca 24 bit yüksek çözünürlük kapasitesine sahip olmakla kalmaz (genellikle 12 veya 16 bit aralığına düşer), aynı zamanda 128k / S'ye kadar örnekleme hızıyla (genellikle yalnızca 20K'yı destekler) yüksek frekanslı sinyalleri de yakalayabilir. Kullanıcılara daha fazla titreşim analizi materyali sağlamak için CNC makine ekipmanı üreticileri için yeni iş fırsatları
Öte yandan kesme titreşimi izleme şeması, CNC makine ekipmanı üreticileri için de yeni iş fırsatları yaratabilir. CNC makine ekipmanı tedarikçileri büyük miktarda titreşim bilgisine maruz kaldıklarından, büyük veri analiziyle birleştirildiğinde, sinyal değişiklikleri ile makine arızaları arasındaki korelasyon hakkında daha kapsamlı bir anlayışa sahip olurlar. CNC makine ekipmanı tedarikçileri, birikmiş bilgi varlıklarından en iyi şekilde yararlanabilir, katma değerli hizmetler doğurabilir ve hatta iş modellerini ekipmanın satışından makine çalışma saatlerinin satışına kadar ayarlayabilir, uzun vadeli istikrarlı bir gelir elde edebilir. PC tabanlı kesme titreşimi izleme şemasının operatörü Linghua teknolojisine göre, titreşim izleme şeması iniş aşamasına girmiş ve çeşitli tanınmış CNC takım makinesi üreticileri tarafından benimsenmiştir ve talebi 2017 yılında önemli ölçüde artmıştır, bu da şunu göstermektedir: hem CNC işlemcileri hem de CNC takım makinesi üreticileri, CNC kesme titreşimi izleme şemasına yönelik giderek daha fazla talep görüyor.
İletişim: Ada Li
Tel: +86 17722440307
+86 17722440307
E-posta: Ada@honscn.com
Ekle: 4F, Hayır. 41 Huangdang Yolu, Luowuwei Endüstriyel, Dalang Caddesi, Longhua, Shenzhen, 518109, Çin